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OA.1 Additional Theoretical Results

In this section, we provide proofs and derivations for results mentioned in the body of the paper.

OA.1.1 Sufficient Conditions for SCD-C and SCD-T

In this section, we discuss the single crossing difference condition from the main text. We
clarify its relationship with the more well-known sub- and super-modularity conditions and the
monotone substitutes and complements properties mentioned in the body of the paper. Finally,
we verify the sufficient condition for SCD-T provided in the main text.

Proposition 1 (Sufficiency of sub- and super-modularity). In this first proposition, we show that
submodularity and supermodularity are sufficient to ensure SCD-C. Fix the agent type z and consider
the return function p.

(1) If p is submodular, then p exhibits SCD-C from above.

(2) If p is supermodular, then p exhibits SCD-C from below.

Proof. Since z is fixed during this proof, we suppress in the following for notational brevity.

Begin with a submodular mapping p. Then, by the definition of submodularity, for any sets
A, B, it is the case that

p(A) + p(B) � p(A [ B) + p(A \ B) .

We show that SCD-C from above must hold. Let L1 ✓ L2. Select an arbitrary `. The goal is to
show that:

p(L1 [ {`})� p(L1) � p(L2 [ {`})� p(L2) if ` 62 L2, so ` 62 L1

p(L1 [ {`})� p(L1) � p(L2)� p(L2 \ {`}) if ` 2 L2, but ` 62 L1

p(L1)� p(L1 \ {`}) � p(L2)� p(L2 \ {`}) if ` 2 L1, so ` 2 L2

Define the sets A and B as below for each corresponding scenario.

A ⌘ L1 [ {`} B ⌘ L2 if ` 62 L2, so ` 62 L1

A ⌘ L1 [ {`} B ⌘ L2 \ {`} if ` 2 L2, but ` 62 L1

A ⌘ L1 B ⌘ L2 \ {`} if ` 2 L1, so ` 2 L2

Then, it is easy to see that applying the submodularity condition implies SCD-C from above.

Now, suppose p is supermodular. Then, for any sets A, B, it is the case that

p(A) + p(B)  p(A [ B) + p(A \ B) .
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We show that SCD-C from below must hold. Let L1 ✓ L2. Select an arbitrary `. The goal is to
show that

p(L1 [ {`})� p(L1)  p(L2 [ {l})� p(L2) if ` 62 L2, so ` 62 L1

p(L1 [ {`})� p(L1)  p(L2)� p(L \ {`}) if ` 2 L2, but ` 62 L1

p(L1)� p(L \ {`})  p(L2)� p(L2 \ {`}) if ` 2 L1, so ` 2 L2

Define the sets A and B as above for each corresponding scenario. Then, it is easy to see that
applying the supermodularity implies SCD-C from below.

Next, we show that, in the context of a finite choice space L, the monotone substitutes property
implies submodularity, and the monotone complements property implies supermodularity.

Proposition 2. [Sufficiency for Supermodularity and Submodularity with finite choice space] Fix an
agent type z and consider the return function p. Let A and B be arbitrary sets so that A \ (A \ B) is
finite.

If p exhibits the monotone substitutes property, then

p(A; z) + p(B; z) � p(A [ B; z) + p(A \ B; z) .

If p exhibits the monotone complements property then

p(A; z) + p(B; z)  p(A [ B; z) + p(A \ B; z) .

Proof. Since the agent type z is fixed during this proof, we suppress it for notational brevity in
what follows.

Let Ã and B̃ be arbitrary sets where Ã \ (Ã\ B̃) is finite. First, consider the monotone substitutes
property. Define

I ⌘ Ã \ B̃ A ⌘ Ã \ I B ⌘ B̃ \ I .

Then showing that
p(Ã) + p(B̃) � p(Ã [ B̃) + p(Ã \ B̃)

is equivalent to showing that:

p(I [ A) + p(I [ B) � p(I [ A [ B) + p(I) . (OA.1)

The proof proceeds inductively on the cardinality of A. Since A = Ã \ (Ã \ B̃), it is finite. When
A is empty, then equation (OA.1) holds with equality.
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Now suppose equation (OA.1) holds for |A| = n. Consider the case where |A| = n + 1. Let a be
an arbitrary element from A and define A ⌘ A \ {a}. From the inductive assumption,

p(I) + p(I [ A [ B)  p(I [ A) + p(I [ B)

while from the monotone substitutes property,

Dap(I [ A [ B)  Dap(I [ A)

p(I [ A [ B)� p(I [ A [ B)  p(I [ A)� p(I [ A) .

Combining the two expressions together yields

p(I) + p(I [ A [ B)  p(I [ A) + p(I [ B) ,

which confirms equation (OA.1) for sets A of cardinality n + 1. The inductive proof establishes
that equation (OA.1) holds for all A of finite size.

Next, consider monotone complements property. The argument follows a similar structure.
Now, it is equivalent to show that

p(I [ A) + p(I [ B)  p(I) + p(I [ A [ B) . (OA.2)

Proceed inductively once again on the cardinality of A. When A is empty, equation(OA.2) holds
with equality. Now suppose equation (OA.2) holds for A with cardinality n. Consider A with
cardinality n + 1. Similarly, select an arbitrary element a 2 A and define A ⌘ A \ {a}. The
inductive assumption implies that

p(I) + p(I [ A [ B) � p(I [ A) + p(I [ B)

while from monotone complements:

Dap(I [ A [ B) � Dap(I [ A)

p(I [ A [ B)� p(I [ A [ B) � p(I [ A)� p(I [ A) .

Combining the two expressions together yields

p(I) + p(I [ A [ B) � p(I [ A) + p(I [ B) ,

which confirms equation (OA.2) for sets A of cardinality n + 1. The inductive proof establishes
that equation (OA.2) holds for all A of finite size.
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When A \ (A \ B) is not finite, then monotone complements (substitutes) is not sufficient to
guarantee supermodularity (submodularity) as the following example shows:

Example. Suppose the return p of a decision set S is defined

p(S) =
Z

S
1 ds

�a

and note that the marginal value of any item ` follows as

D`p(S) =
Z

S[{`}
1 ds

�a

�
Z

S\{`}
1 ds

�a

= 0 .

The intuition is simple: since we integrate over the a decision set S for its return, any singular
element ` is measure zero and has no effect on the decision set’s overall return. The return
function therefore satisfies both monotone substitutes and monotone complements. Now
consider A = [0, 2] and B = [1, 3]. It is easy to see that

p(A) = 2a p(A [ B) = 3a

p(B) = 2a p(A \ B) = 1a

so, in this case,

a > 1 ) p(A) + p(B) > p(A [ B) + p(A \ B)

a 2 (0, 1) ) p(A) + p(B) < p(A [ B) + p(A \ B) .

Then, when a > 1, the return function obeys monotone substitutes but violates monotone
complements. Likewise, when a 2 (0, 1), the return function obeys monotone complements but
violates the monotone substitutes property.

Next, we establish the sufficient condition for SCD-T provided in the main body of the paper.
The proof uses again an auxiliary mapping defined in the main text:

L`(L) = {z 2 Z | D`(L; z) > 0} ,

which collects all firm efficiency types z 2 Z for which the marginal value of a given location `

is positive given a choice set L.The complement set to L`(L) is denoted Lc
`(L).

Proposition 3. [Sufficient condition for SCD-T] Fix an item ` and L. Let the entries of z be indexed by
i, so that zi is the ith coordinate of z. Suppose

∂D`p(L; z)

∂zi
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(weakly) maintains its sign over the entire type space for each coordinate i. Then, the problem exhibits
SCD-T.

Proof. We first show that L`(L) is a path-connected, and thus connected, set. Let z and z
0 both

be in L`(L). The proof proceeds by constructing a path from z to z
0. First, we construct the

point z̃ where

z̃i =

8
<

:
max{zi, z0i} if ∂D`p(L;z)

∂zi
� 0

min{zi, z0i} if ∂D`p(L;z)
∂zi

 0
.

Gather the indices I ⌘ {i | zi 6= z̃i}. Index them from m = 1 to m = |I| and construct the
sequence of points {z0, z1, . . . , zm, . . . , z|I|} where

z0 = z zm = zm�1 + lim(z̃im � zim)

and li is the ith standard basis vector (that is, the vector with 1 in the ith coordinate and 0
everywhere else). At each step of the sequence, the imth coordinate is changed to z̃im and all
other coordinates are unchanged.

Then, we construct the piece-wise linear path from z to z̃ sequentially passing through these
points. This path is contained in L`(L) by construction. In particular, D`p(L; ·) starts positive
on this path by assumption on z. In each mth segment of the path, only the imth component
changes while all others stay constant. If the partial derivative of D`p(L; ·) along this dimension
is (weakly) positive, the coordinate is increased; otherwise, it is decreased. Thus, D`p(L; ·)
weakly increases along the path, and so cannot ever fall below zero.

We similarly construct a piece-wise linear path from z
0 to z̃ that lies in L`(L). Joining these

paths together at z̃, we have constructed a path from z to z
0 that remains in L`(L). Since z and

z
0 were any arbitrary members of L`(L), we have shown that it is path-connected, and thus

connected.

Showing Lc
`(L) is path-connected follows a similar argument. Suppose z and z

0 are contained
in Lc

`(L). We construct z̃ in this case as

z̃i =

8
<

:
max{zi, z0i} if ∂D`p(L;z)

∂zi
 0

min{zi, z0i} if ∂D`p(L;z)
∂zi

� 0
.

We can then construct the paths from z to z̃ and from z
0 to z̃ in the same way. Both lie in Lc

`(L)
by the same logic. Therefore, Lc

`(L) is path-connected, and thus connected.
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OA.1.2 Nesting Structure of the Policy Function

The following proposition establishes that, with SCD-C from below, SCD-T, and a single-
dimensional type space, the policy function features a nesting structure.

Proposition 4. [Nested policy function on single dimensional type space] Consider a CDCP (c.f.
Definition 1) with single-dimensional type heterogeneity and for which the return function satisfies
SCD-C from below and SCD-T. Then, for any z1 < z2, it must be that L?

(z1) ✓ L?
(z2).

Proof. The proof proceeds by contradiction. Suppose L?
(z1) 6✓ L?

(z2). Define Lo ⌘ L?
(z1) \

L?
(z2), which has cardinality N 2 (0, •) by assumption. Further, let Li ⌘ L?

(z1) \ L?
(z2) so

that L?
(z1) = Li [ Lo.

To arrive at a contradiction, we now show that for any finite N, it must be that L?
(z2) [ Lo

is preferable to L?
(z2) for z2 types. Note Lo 6= ∆, so L?

(z2) [ Lo 6= L?
(z2). We proceed by

induction on N. Suppose N = 1. Index the single element in Lo by `. Then,

0 < D`p (L?
(z1) , z1) = D`p

⇣
Li, z1

⌘

)0 < D`p
⇣
Li, z2

⌘

)0 < D`p (L?
(z2) , z2)

)p (L?
(z2) [ {`}, z2) > p (L?

(z2) , z2)

where the first line derives from z1 optimality, the second from single-dimensional SCD-T, and
the third SCD-C from above, and the fourth from recognizing that ` 62 L?

(z2). 16 This argument
proves the claim for N = 1.

Now suppose the claim holds for N = n. We now show it holds for n + 1. Select any item ` 2 Lo

and let Lo
n ⌘ Lo \ {`}. Then, by the inductive assumption,

p(L?
(z2), z2) < p(L?

(z2) [ Lo
n, z2) .

Using the optimality of z1 types, SCD-T, and SCD-C from below,

0 < D`p (L?
(z1) , z1) = D`p

⇣
Li [ Lo

n; z1

⌘

)0 < D`p
⇣
Li [ Lo

n; z2

⌘

)0 < D` (L?
(z2) [ Lo

n; z2)

)p (L?
(z2) [ Lo

n [ {`}, z2) > p (L?
(z2) [ Lo

n, z2) � p (L?
(z2) , z2)

where the last inequality makes use of the inductive assumption. Thus we show the claim holds
16To break ties, we assume that all items for which an agent is indifferent are excluded from the optimal set.
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for n + 1 if it holds for n.

We have shown that, for any finite non-empty Lo, agents of type z2 prefer L?
(z2) [Lo to L?

(z2),
a contradiction, hence L?

(z1) ✓ L?
(z2), as claimed.

The next proposition extends Proposition 4 to the case of multidimensional types z, under a
slightly stricter condition on type-location complementarity in place of SCD-T.

Proposition 5. [Nested policy function on multidimensional type space] Consider a CDCP (c.f. Defini-
tion 1) for which the return function satisfies SCD-C from below and for each component i of the type
vector z,

∂D`p(L; z)

∂zi

maintains the same sign for all `, L, and z. Consider two types z1 and z2 where the ith component of
z2 � z1 has the same sign as the ith partial derivative above. Then, L?

(z1) ✓ L?
(z2).

Proof. The proof proceeds by contradiction. Suppose L?
(z1) 6✓ L?

(z2) so that Lo ⌘ L?
(z1) \

L?
(z2) 6= ∆. Let Li ⌘ L?

(z1) \ L?
(z2) so that L?

(z1) = Li [ Lo. Observe that, for any convex
combination of the two types z1 + q(z2 � z1), the marginal value of item j in decision set L for
this type can be expressed using the line integral

D`p(L; z1 + q(z2 � z1)) = D`p(L; z1) +

Z q

0
rD`p(L; z1 + t(z2 � z1)) · (z2 � z1)dt .

Since the integrand is positive for q > 0, the integral is positive as well. We may conclude that
type z1 + q(z2 � z1) receives higher marginal benefit from `’s addition in L than type z1.

To arrive at a contradiction, we now show that agents of type z2 prefer L?
(z2) [ Lo to L?

(z2), a
contradiction since Lo is non-empty. We prove this claim by induction on n the cardinality of Lo.
To begin, suppose |Lo| = 1 and let its element `. Then,

0  D`p(L?
(z1), z1)

= p(Li [ {`}; z1)� p(Li, z1)

 p(Li [ {`}, z2)� p(Li; z2)

= D`(Li; z2)

where the inequality follows from the line integral above. Then, 0  D`(Li; z2), implying
that 0  D`(L?

(z2); z2) from SCD-C from below. Then, ` should optimally be included and
L?

(z2) [ Lo is preferred to L?
(z2). The claim holds for n = 1.

Suppose the claim holds for n. To show it must hold for n + 1, suppose |Lo| = n + 1 and select
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an item from this set to label `. Let Lo
n = Lo \ {`}. Then,

0  D`p(L?
(z1), z1) = D`p(Li [ Lo

n, z1)

 D`p(Li [ Lo
n, z2)

0  D`p(L?
(z2) [ Lo

n, z2)

where the second line follows from the line integral and the third from SCD-C from below. We
may conclude that an agent with type z2 prefers L?

(z2)[Lo
n [ {`} to L?

(z2)[Lo
n, which is itself

preferred to L?
(z2) by the inductive assumption.We have shown that, for any finite non-empty

Lo, agents of type z2 prefer L?
(z2) [ Lo to L?

(z2), a contradiction. Hence L?
(z1) ✓ L?

(z2), as
claimed.

Observe that the condition replacing SCD-T in Proposition 5 is stricter than the sufficiency
condition for SCD-T provided in Proposition 3 above. The sufficiency condition allows the ith
component of the gradient to differ in its sign for each i, `, and L, as long as it is the same across
the type space given these. In contrast, the condition in Proposition 5 requires the sign to remain
the same for each i, regardless of which ` and L are chosen.

OA.2 Additional Figures and Tables

Additional Measures of Fit of our Calibrated Model Table OA.1 reports the model fit for
moments targeted and untargeted in our calibration. As described in Section 5.2, we are able to
exactly match the gravity coefficients and country-level moments we target. Our model also
nearly exactly matches both the mean and the standard deviation of trade shares, MP shares,
and affiliate shares, the full matrices of which we do not directly target. Table OA.1 also shows
that our model exactly replicates the coefficients in Table 1 by adjusting the elasticities of the
trade costs, MP costs, and fixed costs to distance, colony, common language, and common
border dummies. For all three outcomes, the model explains more than half of the variation in
the data. We also report the unconditional correlations for these outcomes between model and
data. Overall the fit of our model is very good.

The Determinants of Bilateral Cost Table OA.2 shows the relationship between the calibrated
MP costs and fixed costs by distance and other gravity variables. We drop pairs of countries for
which we observe no MP activity in the data since we infer infinite MP costs for them. We drop
diagonal entries of the cost matrices which are normalized to 1.

The table compares the results from the baseline model on the left against the alternative
calibration with no fixed costs. Accordingly, the table on the right does not contain results
for fixed costs. Even-numbered columns represent the true specification of costs in the model,
reflected in the zero standard errors. On the other hand, odd-numbered columns follow the
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Table OA.1: Additional Measures of Model Fit

Untargeted Moments

Targeted Moments Inward Outward

Data Model Data Model Data Model

PPML Gravity Coefficients (Trade, MP, Affiliates) Foreign Trade Shares

Log Distance -0.69, -0.29, -0.69 -0.69, -0.29, -0.69 Mean 0.011 0.011 0.010 0.011
Colony 0.08, 0.00, 0.23 0.08, 0.00, 0.23 SD 0.023 0.020 0.023 0.021
Contiguity 0.44, 0.42, 0.45 0.44, 0.42, 0.45 Corr 0.824 0.828
Language 0.15, 0.47, 0.57 0.15, 0.47, 0.57 R2 0.678 0.686

Survival Rate Foreign MP Shares

Mean 0.86 0.86 Mean 0.009 0.009 0.006 0.006
SD 0.05 0.05 SD 0.026 0.027 0.015 0.015
Corr 1.00 Corr 0.726 0.723
R2 1.00 R2 0.527 0.522

GDP per Capita (US = 1) Foreign Affiliate Shares

Mean 0.62 0.62 Mean 0.000 0.000 0.000 0.000
SD 0.21 0.21 SD 0.001 0.001 0.001 0.001
Corr 1.00 Corr 0.757 0.831
R2 1.00 R2 0.573 0.690

Notes: The left panel shows various moments targeted in our calibration in both the calibrated model and the
data. The right panel shows various moments not targeted in the calibration in both calibrated model and data. To
compute all moments, we drop the diagonals of all bilateral matrices. While we target the coefficients on gravity
variables Table 1, we do not directly target the full matrix of foreign trade, MP, or affiliate shares. The inward shares
are such that they sum to 1 if added by destination, across origin. For example, inwards trade shares break down
each destination market’s imports by import origin. Outwards shares sum to 1 if added by origin, across destination.
For example, outwards trade shares break down each production country’s exports by export destination.

specification of Alviarez et al. (2023), in particular including origin-specific fixed effects but
omitting the colony and contiguity gravity variables.

Additional Counterfactual Figures Figure OA.1 presents the percentage change of affiliate
counts in the counterfactual Brexit experiments. Figure OA.2 shows the percentage change of
affiliate counts when sanctions are placed on Russia.

OA.3 A More General Theoretical Framework

In this section, we relax the assumptions on the production structure and the demand system in
our model in Section 2. Instead of specifying a particular production structure, we postulate a
cost function that maps a firm’s type, its production location set, and its headquarters location
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Table OA.2: Calibrated Costs and Gravity Variables

Baseline Calibration Without Fixed Costs

Log MP Costs Log Fixed Costs Log MP Costs

(1) (2) (3) (4) (5) (6)

Log Distance 0.012⇤⇤⇤ 0.0004⇤⇤⇤ 0.394⇤⇤⇤ 0.354⇤⇤⇤ 0.133⇤⇤⇤ 0.100⇤⇤⇤
(0.001) (0.000) (0.003) (0.000) (0.002) (0.000)

Colony 0.028⇤⇤⇤ �0.176⇤⇤⇤ 0.007⇤⇤⇤
(0.000) (0.000) (0.000)

Contiguity �0.058⇤⇤⇤ �0.057⇤⇤⇤ �0.128⇤⇤⇤
(0.000) (0.000) (0.000)

Language �0.061⇤⇤⇤ �0.065⇤⇤⇤ �0.155⇤⇤⇤ �0.082⇤⇤⇤ �0.140⇤⇤⇤ �0.127⇤⇤⇤
(0.003) (0.000) (0.008) (0.000) (0.007) (0.000)

Destination Fe Yes Yes Yes Yes Yes Yes
Origin FE Yes No Yes No Yes No
Observations 707 707 707 707 707 707

Notes: The table shows results from regressing the log of the calibrated MP costs and fixed costs on log distance.
and other gravity variables. The even-numbered columns are the true specification of costs in the model, reflected
in the zero standard errors. The odd-numbered columns reflect the specification of Hjort et al. (2022). The left
panel shows results from the baseline calibration while the right panel replicates these regressions in the alternative
calibration with no fixed costs. We drop country pairs with zero MP for which we infer infinite MP costs and fixed
costs. We also drop own country pairs. Levels of significance are denoted as follows: ⇤⇤⇤ Significant at 1 percent
level. ⇤⇤ Significant at 5 percent level. ⇤ Significant at 10 percent level.
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Figure OA.1: Net Percentage Changes in Affiliate Counts by Sender and Host Country in the
Brexit Simulation

Notes: The figure shows the percentage change in the number of affiliates operated by firms headquartered in the
EU in non-EU countries, EU countries, and in Great Britain in the Brexit simulation. The blue bar reflects a 10%
trade costs increase, the purple bar adds a 10% increase of the MP costs, the orange bar adds a 10% increase in fixed
costs. The yellow bar considers the trade and fixed cost increases in isolation.
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Figure OA.2: Net Percentage Changes in Affiliate Counts by Sender and Host Country in the
Sanctions on Russia Simulation

Notes: The first panel of the figure shows the percentage change in the mass of affiliates operated by firms
headquartered in countries that placed sanctions to Russia in Russia itself, within the territory of the sanctioning
countries, and in third party countries. The ;eft panel of the figure shows the change in the mass of affiliates
operated by firms headquartered in Russia in Russia itself, within the territory of the sanctioning countries, and in
third party countries. The blue bar refers to a counterfactual with a 30% increase in the cost of MP, the purple bar
adds a 30% increase in the fixed costs, the fourth (yellow) bar sets both the MP cost to infinity.
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to a unit cost. We then show how to establish single-crossing differences in this more general
setup.

OA.3.1 Framework

Cost function Consider a firm of productivity z 2 R+ headquartered in country i with a
production location set L and the unit cost cin(L, z) of delivering its final good to a destination
market n. In Section 2 equation (3), we presented a particular microstructure for cin(L, z).
Instead, in this section, we directly impose structure on cin(L, z) while remaining agnostic on its
microfoundation.

Assumption 1. The cost function of a firm headquartered in country i with productivity z in destination
n can be written as cin(L, z) = g(Qin(L), z) where g : R2 ! R+ and Q : P ! R, and the production
index function Q is monotonically increasing in the sense that L ✓ L0 ) Qin(L)  Qin(L0

) for all
L,L0 ✓ L (if it is decreasing, redefine Q̃in(L) = �Qin(L)); and Qin features no interdependencies
among elements of L, i.e., D`Qin ⌘ Qin(L [ {`})� Qin(L) does not depend on L for all ` 2 L and
any L ✓ L.The “cost function” g is monotonically decreasing in firm productivity (if it’s increasing
redefine z̃ ⌘ �z) and in production potential, i.e., ∂g/∂z  0 and ∂g/∂Qin  0 hold for all L 2 L and
z 2 R+.

The central object in Assumption 1 is the production “index” function Q that maps a production
location set L into a scalar. Importantly, this index is such that the marginal contribution of each
location to the index is independent of the marginal contribution of other locations.

The cost function cin(L, z) in equation 3 from our framework in Section 2 satisfies Assumption 1.
In particular, in that model, the index function is given as follows:

Qin(L) = Â
`2L

✓
gi`w`t`n

z`T`

◆�q

,

and the function g(·) by:
g(Q) = G̃Q� 1

q .

Many papers in the multinational literature refer to Q as the “production potential” or “sourcing
potential” associated with a given location set (see, e.g., Antras et al. (2017)). Assumption 1 is
also satisfied in models in which the location-input-specific productivity shocks are distributed
according to a multivariate Pareto as in Arkolakis et al. (2018), or a Fréchet distribution with a
uniform correlation across draws. In these cases,

gin(Q, z) = G̃
1
z

Qin(L)�
1�r

z

where r is the correlation among draws and z is the distribution’s shape parameter.
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Assumption 2. The total fixed cost of establishing a production location set L for a firm headquartered
in location i, Fi(L), is given by:

Fi(L) = Â
`2L

fi`.

Assumption 2 asserts that there is an independent fixed cost for establishing each production
location.

Demand and the firm’s profit function Consider a set of destination markets N, each of which
feature consumers with demand function qn (pn). We then impose the following structure on
the firm’s variable profits.

Assumption 3. The firm’s variable profit function takes the form

p(c) = Â
n2N

[qn (pn) pn � qn (pn) cn] ,

where c = [cn]n is the vector of unit costs of producing and delivering a good to the destination markets
n.

A key feature of this profit function is that the destination markets are independent and that
there are no strategic interactions among firms. In particular, the unit cost cn of serving a market
n does not affect the variable profits earned in destination market n0 6= n. Similarly, the price pn

set by the firm in market n does not affect the variable profits in a different destination market
or create strategic considerations among firms. Note we impose little structure on the form of
unit costs in this assumption. Instead, we take the vector of unit costs c as given.

Following standard firm maximization, the firm sets a different price in each market according
to the rule

p⇤n =
#qn (p⇤n)

#qn (p⇤n)� 1
cn,

where #qn (pn) is the price elasticity of the demand function qn at the price pn. Incorporating the
optimal pricing rule, we define the variable profits in market n earned at the optimal price

p⇤
n (cn) ⌘ qn (p⇤n) p⇤n � qn (p⇤n) cn

as a function of marginal cost cn.

OA.3.2 Establishing SCD-C and SCD-T

Throughout this Section, we assume that Assumptions 1-3 hold.17 We show that there exist
easy-to-verify conditions to check whether the firm’s problem satisfies SCD-C and SCD-T.

17We require that ∂pin/∂Qin � 0 so that profits weakly increase as the value of the index function grows. Note
that this always holds under Assumption 1, since ∂g/∂Qin  0 implies ∂pin/∂Qin � 0.
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Sufficient Conditions for SCD-C We derive a sufficient condition for SCD-C. First notice
that given Assumption 1, the marginal contribution of a given production location to the index
function Qin is independent of other production sites. As a result, without loss of generality, we
can write Qin as the sum of the marginal effects of each location on the index:

Qin(L) ⌘ Â
`2L

xi`n

where the constant xi`n is the marginal increase in the index from adding ` to L for all L 2 L.
Next, we can write the marginal value of location j as defined in Definition 2 as follows:

Djpi (L; z) = Â
n
[p⇤

n (cin (L [ {j} ; z))� p⇤
n (cin (L \ {j} ; z))]� fij. (OA.3)

The marginal value represents the gain in variable profits from increasing the index function
Qin by xijn which is offset, in part, by the additional fixed costs incurred. The SCD-C condition
requires that the expression in equation (OA.3) only crosses zero once. It is sufficient to show the
marginal value is monotonic, i.e., given any L1 ✓ L2 ✓ L, the marginal value of any given item
j is bigger (smaller) at L2 than for L1 for SCD-C from below (above). Comparing this marginal
value across two decision sets and making use of the fundamental theorem of calculus, we have

Djpi(L2; z)� Djpi(L1; z) = Â
n

Z xijn

0

"
∂p⇤

n
∂Qin

 
y + Â

`2L2

xi`n, z

!
� ∂p⇤

n
∂Qin

 
y + Â

`2L1

xi`n, z

!#
dy

= Â
n

Z Q(L2)

Q(L1)

∂

∂x

Z xijn

0

∂p⇤
n

∂Qin
(x + y, z)dy

�
dx

= Â
n

Z Q(L2)

Q(L1)

"Z xijn

0

∂2p⇤
n

∂Q2
in
(x + y, z)dy

#
dx

where we assume the second derivative of the profit function exists and use the fact that, as a
direct consequence of the index function being a sum of marginal effects, the value of the index
evaluated at L2 exceeds its value at L1:

Qin(L1) = Â
`2L1

xi`n  Â
`2L2

xi`n = Qin(L2).

Thus, ∂2p⇤
n

∂Q2
in
� 0 for all markets n is sufficient to guarantee the sign of the RHS is positive, i.e.,

the marginal value of k in the larger set L2 exceeds its marginal value in the smaller set L1.
Then, we are guaranteed SCD-C from below. Similarly, ∂2p⇤

n
∂Q2

in
 0 for all markets n is sufficient to

guarantee SCD-C from above.

We next translate this condition to conditions on the demand and the cost function. The second
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derivative of the destination-specific profit function with respect to the production is given by:

∂2p⇤
n

∂Q2
in

=
∂p⇤

n(c)
∂c| {z }
⌘p⇤0

n

∂g(Qin, z)
∂Qin| {z }
⌘g01

=
#g

Qin


#p⇤0

n
�

#g01
#g

�
(OA.4)

where the elasticity of the derivative of the profit function is

#p⇤0
n
= �

∂2p⇤
n(c)

∂c2

∂p⇤
n(c)
∂c

c2
= #q(p)

| {z }
demand elasticity

d ln p
d ln c| {z }

passthrough

.

The sign of ∂2p⇤
n

∂Q2
in

is determined by the component in square brackets since the term pre-
multiplying them is positive. All together, the firm’s profit function satisfies SCD-C from

below if the term in square brackets is positive, i.e., if #p⇤0
n

exceeds
#g01
#g

, and SCD-C from above if
the inequality is reversed.

Similarly to the main text, the condition in equation (OA.4) separates demand and supply
side forces. The modeling assumptions in Section 2 implied that demand side forces were
always inducing positive complementarities among production locations and supply side forces

negative complementarities. For example, it is possible for the cost side term
#g01
#g

< 0, if the
locations are complements in cost. One microfoundation for these cost-side complementarities
could be scale economies in the number of production sites, agglomeration in the density of
production locations, or complementarities that may arise from location-level specialization.18

Sufficient Conditions for SCD-T A similar argument holds for SCD-T in our context, when
the productivity is Hicks-neutral, according to

cin (L; z) =
G̃
z

"

Â
`2L

xi`n

#� 1
q

⌘ g̃(L)
z

.

The marginal value of a location ` to a set L is

Â
n


p⇤

n

✓
g̃ (L [ `)

z

◆
� p⇤

n

✓
g̃(L)

z

◆�
� fi` = Â

n

Z g̃(L[`)
z

g̃(L)
z

p⇤0
n (c)dc � fi`

= Â
n

Z g̃(L[`)

g̃(L)
p⇤0

n

⇣x
z

⌘ 1
z

dx � fi`

18Though it is possible for the demand-side complementarities to be negative, through either negative demand
elasticity or passthrough, this scenario is less likely.
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via a change in variables. Since g̃(L) > g̃(L [ `) , we have

p⇤
n

✓
g̃ (L [ `)

z

◆
� p⇤

n

✓
g̃(L)

z

◆
� fi` =

Z g̃(L)

g̃(L[`)

h
�p⇤0

n

⇣x
z

⌘i 1
z

dx � fi`

where p⇤0
n  0 since variable profits decrease in marginal cost. SCD-T requires that this marginal

value crosses zero at one productivity value at most. It is sufficient to show that the marginal
value is monotonic in productivity. Comparing the marginal value at two values of productivity
z1  z2, Z g̃(L)

g̃(L[`)


�p⇤0

n

✓
x
z2

◆�
1
z2

dx �
Z g̃(L)

g̃(L[`)


�p⇤0

n

✓
x
z1

◆�
1
z1

dx

=

Z z2

z1

∂

∂z

⇢Z g̃(L)

g̃(L[`)

h
�p⇤0

n

⇣x
z

⌘i 1
z

dx
�

dz

=

Z z2

z1

Z g̃(L)

g̃(L[`)

h
�p⇤0

n

⇣x
z

⌘
� n

z
p⇤00

n

⇣x
z

⌘i ✓
� 1

z2

◆
dxdz

=

Z z2

z1

Z g̃(L)

g̃(L[`)


� 1

z2 p⇤0
n

⇣x
z

⌘� "
�

p⇤00
n
� x

z
�

p⇤0
n
� x

z
� x

z
� 1

#
dxdz

=

Z z2

z1

Z g̃(L)

g̃(L[`)


� 1

z2 p⇤0
n

⇣x
z

⌘� ⇥
#p⇤0

n
� 1
⇤

dxdz

so it is sufficient to show this difference is positive. Note that the first square bracketed term is
positive. Then, it is sufficient for #p⇤0

n
� 1 for SCD-T to hold. Recall

#p⇤0
n
= #q(p)

d ln p
d ln c

,

so SCD-T holds as long as

#q(p)
d ln p
d ln c

� 1.

A Multivariate Generalization The previous conditions can be extended to a case where
the firm’s cost function is instead a multivariate function g : RK ! R that maps K different
production indexes Q to the cost function. In particular, Lind and Ramondo (2023) present a
microfoundation for such a cost function, where

g(Q; z) =
G̃
z

"

Â
k

Qkin(L)1�rk

#� 1
q

, Qkin(L) = Â
L

xki`n

derives from a nested multivariate Fréchet structure with correlation rk within nests indexed by
k, and the contribution xki`n of location ` to serving destination n as a firm based in i can vary by
nest k. The terms xki`n are constant across firms, with similar interpretation within nests to xi`n

in the baseline model. Finally, G̃ is a constant of integration. Correlated nests, as discussed in
Lind and Ramondo (2023), can arise from models with K different technological techniques of
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production, industries, or other latent variables.

With this structure, the marginal value of item j now affects each of the K indices Qkin(L [ {j})
for each nest. In particular, using the gradient theorem,

Djpi (L1; z) = Â
n
[p⇤

n (cin (L1 [ {j} ; z))� p⇤
n (cin (L1 \ {j} ; z))]� fij

= Â
n

Z 1

0
Â xin(j)0 [rQp⇤

n (xin(j)t + Q (L1) ; z)]dt � fij

where we let xin(j) be the K ⇥ 1 vector with kth element xkijn.

To derive a sufficient condition for SCD-C, we compare the marginal value of j to the sets L1

and L2 for any pair L1 ✓ L2,

Djpi (L2)� Djpi (L1) = Â
n

Z 1

0
xin(j)0rQ [p⇤

n (xin(j)t + Q (L2) ; z)

�p⇤
n (xin(j)t + Q (L1) ; z)]dt

= Â
n

Z 1

0
xin(j)0rQ

Z 1

0
rQp⇤

n (Q (L1)

+xin(j)t + (Q (L2)� Q (L1))↵ xin(j)� xin(j)u; z) xin(j)dudt

= Â
n

Z 1

0

Z 1

0
xin(j)0HQp⇤

n (Q (L1)

+xin(j)t + (Q (L2)� Q (L1))↵ xin(j)� xin(j)u; z) xin(j)dudt

where � and ↵ denote Hadamard (element-wise) multiplication and division, respectively, and
H is the Hessian operator. We derive the second line in the above by applying the gradient
theorem a second time.

Then, if the Hessian of p⇤
n is positive semidefinite for all n, the difference is guaranteed to be

positive and the firm’s problem exhibits monotone complements (sufficient for SCD-C from
below). On the other hand, if the Hessians for all n is negative semidefinite, the difference is
guaranteed to be negative and the firm’s problem exhibits monotone substitutes (sufficient for
SCD-C from above).

The Hessian of the function p⇤
n derived with respect to Q has as its (k, k0)th element is a

generalization of the single-dimensional case, as follows,

∂p⇤
n(c)
∂c

∂g (Q, z)
∂Qkin

✓
�∂ ln g (Q, z)

∂Qk0in

◆2

4#p⇤0
n
�

� ∂ ln g0k(Q,z)
∂ ln Qk0 in

� ∂ ln g(Q,z)
∂ ln Qk0 in

3

5

where g0i is the partial derivative of g with respect to the kth element of Q. Similarly to the
single dimensional case, the terms preceding the square brackets are positive. Thus, the sign of
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each element in the Hessian is determined entirely by the term in the square brackets. Thus, an
extremely strong sufficient condition for monotone complements is for the term in the square
brackets to be positive for all n and nest pairs (k, k0). Similarly, an extremely strong sufficient
condition for monotone substitutes is for the term in the square brackets to be negative for all n
and nest pairs (k, k0).

As an example, consider the multivariate g function in Lind and Ramondo (2023). To derive
the sign of the term in the square brackets, note that #p⇤0

n
remains the product of passthrough

and the elasticity of demand, since we do not change our assumption on the structure of p⇤
n.

However, computing the terms deriving from the cost side,

� ∂ ln g0k(Q,z)
∂ ln Qk0 in

� ∂ ln g(Q,z)
∂ ln Qk0 in

=

8
>>><

>>>:

1 + q if k 6= k0

1 + q + rk

1�rk
q

Q
1�rk
kin

Âk0 Q
1�rk0
k0 in

if k = k0 .

Thus, s  1 + q is more than sufficient to guarantee that the firm’s problem will display the
monotone substitutes property, and thus SCD-C from above. Intuitively, this cost function
introduces correlation across the Fréchet draws within the same nest k, but no correlation across
nests. Thus, when we consider two different nests k 6= k0, we derive the original condition for
monotone substitutes that we had from the uncorrelated Fréchet distribution. However, if we
consider the behavior within the same nest, k = k0, the draws are correlated. In this case, they
become more closely substitutable, and thus the “cannibalization” effect on the cost side grows
larger than the 1 + q benchmark from the uncorrelated case.

The nested correlation structure precludes easily testing for monotone complements. However,

as long as Q
1�rk
kin

Âk0 Q
1�rk0
k0 in

, the relative importance of nest k among all nests, can be bounded from

below, then the cost-side cannibalization effect can be bounded from above. In this case, it is
sufficient for the demand-side complementarities to exceed the upper bound of the cost-side
complementarities. However, if it is impossible to bound these shares from below, then it also
would be impossible to generically constrain the cannibalization on the cost side below the
positive complementarities that arise from the demand side.

To derive a sufficient condition for SCD-T with Hicks neutral productivity, we consider how this
marginal value changes in productivity z. In particular, one again define a function g̃ such that

g (Q; z) ⌘ g̃ (Q)

z
.
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Then, the marginal value of location j can be rewritten

Djpi (L; z) = Â
n

Z 1

0
Â
k

xkijn
∂p⇤

n
∂Qkin

✓
g̃ (xin(j)t + Q (L))

z

◆
dt � fij

= Â
n

Z 1

0
Â
k

xkijnp⇤0
n

✓
g̃ (xin(j)t + Q (L))

z

◆
∂g̃ (xin(j)t + Q (L))

∂Qkin

1
z

dt � fij

.

Comparing this marginal value for two otherwise identical agents with productivities z1 and
z2, where z1  z2, it is sufficient for SCD-T to show that the marginal value of the location in
j is higher for the agent with the higher productivity. We employ the same approach as the
single-dimension case, now to each of the K partial derivatives of p⇤

n.

Djpi (L; z2)� Djpi (L; z1)

=

Z z2

z1

∂

∂z Â
n

Z 1

0
Â
k

xkijnp⇤0
n

✓
g̃ (xin(j)t + Q (L))

z

◆
∂g̃ (xin(j)t + Q (L))

∂Qkin

1
z

dtdz

=

Z z2

z1
Â
n

Z 1

0
Â
k

xkijn
∂g̃ (xin(j)t + Q (L))

∂Qkin

2

4�
p⇤0

n

⇣
g̃(xin(j)t+Q(L))

z

⌘

z2

3

5 ⇥#p⇤0
n
� 1
⇤

dtdz

=

Z z2

z1

Z 1

0
Â
n

2

4�
p⇤0

n

⇣
g̃(xin(j)t+Q(L))

z

⌘

z2

3

5 ⇥#p⇤0
n
� 1
⇤
Â
k

xkijn
∂g̃ (xin(j)t + Q (L))

∂Qkin
dtdz

By the same argument, the term in the first set of square brackets is positive. Therefore, for this
difference to be non-negative, it is sufficient for the term in the second set of square brackets to
the positive. We thus derive the same sufficiency condition for SCD-T, namely that #p⇤0

n
� 1.

OA.4 The Branching Procedure

In this section, we provide the details about the basic branching procedure to maximize the
objective function of a single agent and the generalized branching procedure to solve for the
policy function mapping firm types to optimal strategies.

OA.4.1 The Basic Branching Procedure

At the heart of the branching procedure is a “branching step” applied to a CDCP for which the
squeezing procedure has converged. The branching step takes an undetermined item ` such
that ` 2 L(K) \ L(K) and forms two subproblems, or “branches:” one in which ` is included
in L? (i.e., added to L) and one in which it is excluded from L? (i.e., excluded from L).19 The
two fixed points resulting from applying the squeezing procedure to the bounding sets of each

19Any item ` such that ` 2 L(K) \ L(K) can be chosen to initiate the branching procedure.
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subproblem are the optimal decision sets conditional on the assumed inclusion or exclusion of `.
The optimal location set of the original CDCP is then the conditional optimal location set that
yields the higher value of p.

In cases where the fixed point of at least one of the subproblems does not contain two identical
sets, the branching step can be applied recursively. In particular, within each subproblem, we
focus on another undetermined item `0 and create two sub-sub-problems. Recursively applying
the branching step in such a way creates a “tree,” where the terminal nodes are subproblems for
which the squeezing procedure has converged to a bounding set pair where the lower bound
and upper bound are equal.

We now formally define the branching step which uses the squeezing step from Definition 5:

Definition 8 (Branching step). Given bounding sets [L,L], select some element ` 2 L \ L.

The mapping Ba is given by

Ba
([L,L]) ⌘

n
Sa(K) �

[L [ {`},L]
�

, Sa(K) �
[L,L \ {`}]

�o

The mapping Bb is given by

Bb
([L,L]) ⌘

n
Sb(K) �

[L [ {`},L]
�

, Sb(K) �
[L,L \ {`}]

�o

For given initial bounding sets [L,L], we denote the operator of applying the branching step
until global convergence by Ba(K)

([L,L]) and Bb(K)
([L,L]), respectively. Global convergence of

the branching step occurs when the stopping condition L = L is met on each branch.20

Suppose the return function exhibits SCD-C from above.21 Given an initial bounding pair
[L,L] with L ✓ L? ✓ L, the globally converged result Ba(K)

([L,L]) is a collection of branch-
specific optimal decision sets. The cardinality of the set is the number of branches. Among
these conditionally optimal decision sets, the one yielding the highest value of p is the optimal
location set solving the original CDCP. Note that contrary to the squeezing procedure, the
branching procedure always identifies the optimal decision set.

For exposition, suppose the return function satisfies SCD-C, and consider Figure OA.3 which
shows an example of a tree created by the branching procedure. It starts with a bounding set
pair for which the squeezing procedure has converged, but there still remain undetermined
items. One of these, `, is selected. Two branches based on this item are formed. The left hand
branch corresponds to the subproblem where ` is presumed to be excluded from the optimal
decision set, while the right hand branch corresponds to the subproblem where ` is presumed

20Note that the definitions of the branching steps Ba and Bb suppose convergence of the squeezing procedure, so
they are defined only when this convergence occurs. When then return function exhibits SCD-C, the squeezing
procedure always converges.

21The same logic applies with Bb(K) when the underlying return function exhibits SCD-C from below.
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Figure OA.3: An Example Path of the Branching Procedure

L
L

L L

` out ` in

`0 out `0 out

`00 out `00 out

Notes: The figure shows an example of a tree of subproblems resulting from applying the branching procedure
recursively. Convergence on a single branch occurs when the squeezing procedure returns a conditionally optimal
set, denoted by the colored Ls. The final output of the full recursive algorithm is the collection of all conditionally
optimal sets.

to be included. The squeezing procedure is reapplied in each branch. On the right hand branch,
the squeezing procedure delivers a bounding pair where L = L, yielding the orange L. This
location set is optimal conditional on the requirement that ` must be included. On the other
hand, convergence of the squeezing procedure in the left hand branch does not deliver an
optimal decision set. The returned bounding pair is still such that there are strictly more items
in the upper bound than lower bound set. The branching procedure therefore branches again,
this time selecting the still undetermined item `0 on which to branch.

Repeating the squeezing procedure on both branches, the right hand branch once again delivers
a conditionally optimal decision set, the green L. This green location set L is optimal conditional
on both ` and `0 being included in the decision set. Again, the left hand branch does not deliver
an optimal set, so the branching step is applied one last time, this time branching on item `00. This
branch yields conditionally optimal decision sets, the brown and pink Ls. The first is optimal
conditional on `, `0, and `00 all being excluded. Likewise, the second is optimal conditional
on excluding ` and `0, but including `00. As a final step, all conditionally optimal sets must be
manually compared, by evaluating the return function with each. The location set yielding the
highest value is the global optimum.

To summarize the branching procedure, consider a CDCP as defined in equation (6) and let the
bounding pair [L,L] be such that L ✓ L? ✓ L.

Then, if p exhibits SCD-C from above,

L?
= arg max

L2Ba(K)(Sa([L,L]))
p(L; z) .

while if p exhibits SCD-C from below,

L?
= arg max

L2Bb(K)(Sb([L,L]))
p(L; z) .
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OA.4.2 The Generalized Branching Procedure

We define the generalized branching step which uses the generalized squeezing step in Definition
7 as follows:

Definition 9 (Generalized branching step). Given a 4-tuple [(L,L, M), Z] and some ` 2 M,

The mapping Ba is given by

Ba
([(L,L, M), Z]) ⌘ Sa(K)

([L [ {`},L, ∆, Z]) [ Sa(K)
([L,L \ {`}, ∆, Z]) .

where Sa(K) denotes recursively applying Sa until convergence.

The mapping Bb is given by

Bb
([(L,L, M), Z]) ⌘ Sb(K)

([L [ {`},L, ∆, Z]) [ Sb(K)
([L,L \ {`}, ∆, Z]) .

where Sb(K) denotes recursively applying Sb until convergence.

Given an initial 4-tuple [(L,L, M), Z] and an undetermined item ` 2 M, the generalized branch-
ing step creates two branches or subproblems. The first supposes that ` is included in the optimal
decision set, while the second supposes that it is excluded. Note that, since the generalized
squeezing step returns a set of 4-tuples, the generalized branching step combines them together
with set union. To each of these two subproblems we apply the generalized squeezing procedure
until global convergence obtaining a collection of 4-tuples which exhaustively partition the
original region Z.22 Each branch may now contain different partitions of the original type space.

On either branch, if there are any 4-tuples with undetermined items, the generalized branching
step can be applied again. The generalized branching procedure consists in recursively applying
the generalized branching step this way, where recursion stops on a given 4-tuple when the
bounding sets for that 4-tuple coincide. Global convergence occurs when bounding sets coincide
for 4-tuples on all branches. Then, the output of the generalized branching procedure is a
collection of 4-tuples each of the form [(L,L, ∆), Z].

For illustration, Figure OA.4 depicts the process of applying the generalized branching procedure
to an initial 4-tuple [(L,L, M), Z]. The initial 4-tuple specifies lower and upper bound sets (L,L)
over the entire dotted interval Z between z and z. Applying the generalized branching step
once, the problem is divided into two subproblems: one corresponding to requiring item `

to be excluded, and the other requiring that item ` be included. In the subproblem on the
right branch, the squeezing procedure identifies the single (orange) location set that is optimal

22The definitions of the branching steps Ba and Bb suppose convergence of the generalized squeezing procedure,
and are therefore defined only when convergence occurs.
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Figure OA.4: An Example Outcome of the Generalized Branching Procedure

z z

L
` in

L

` out

L L
`0 in

L

`0 out

L `00 in

L L

`00 out

L, LL, L, LL, L, LL, L, L, LL, L, L, L

Notes: The figure illustrates a recursive application of the generalized branching procedure. At each application,
one undetermined item is selected on which to branch, yielding conditional policy functions. Each colored L
represent a different decision set. Branching continues until no undetermined items remain for all types on all
branches. Conditionally optimal decision sets for each type are ultimately gathered at the bottom of the figure.

for the whole interval conditional on including `. On the left branch, ` is excluded. In this
case, convergence from the squeezing procedure delivers a policy function only for the highest
types z 2 Z, identifying the (blue) optimal decision set. Undetermined elements remain for
the lower types of the range. The branching step is thus reapplied for this subsection of the
original interval, selecting a second undetermined element, `0. This procedure repeats until no
undetermined elements remain in any of the branches for any type z 2 Z.

Now consider the entire initial region Z, repeated at the bottom of the graphic. The repeated ap-
plication of the squeezing procedure to smaller and smaller subregions of the type space creates
subregions of the overall type space that share several conditional optimal policy functions. We
show the conditional optimal policy function that apply to each subregion. For each subregion,
we now manually choose which of the associated conditional policy functions maximizes the
return function for each type in the subregion. Piecing together the so chosen optimal policy
functions for each interval yields the optimal policy function that solves the original CDCP on
the interval [z, z].
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OA.5 The Pollak Demand System

Our quantitative application specializes the demand system of our general framework from
Section 2 to the standard constant elasticity (CES) demand system. The CES demand system
implies constant markups over marginal costs. In this section, we discuss the Pollak demand
system which is also nested by our general formulation in Section 2, but implies variable
markups over marginal costs instead.

The class of demand systems introduced by Pollak (1971) has become popular in the literature
studying variable markups.23 Consider the following demand function for a good w from the
Pollak class which is frequently used in quantitative applications (e.g., Arkolakis et al. (2019))
and first appeared in Klenow and Willis (2016):

qn (pn(w)) = QnD (pn (w) /Pn) = (pn (w) /P?
n )

�s
+ g, where Qn = 1 (OA.5)

where g < 0. The demand in equation (OA.5) has a variety of appealing features. First, it
features a choke price, P?

n , which implies that entry into each destination market n is guaranteed
only for the firms with low enough marginal costs, cn  P?

n . In other words, a firm does not
necessarily serve all countries, but self-selects into export markets consistent with the data
(see also Arkolakis et al. (2019)). Second, asymptotically, the elasticity of demand is constant,
which allows the model to fit the Pareto-size tails of firm distribution for the largest firms and
exporters, a key feature of the data (see Arkolakis (2016); Amiti et al. (2019)). Finally, under very
general conditions, it implies that markups increase with firm size, a salient finding of recent
investigations on the relationship of firm size and firm markups (see De Loecker et al. (2016)).

The pricing rule implied by the demand function in equation (OA.5) is given by

pn (w) =
s

(s � 1) + (pn (w) /P?
n )

s c,

where the markup is decreasing in the firm’s marginal cost, c, in contrast with the CES demand
system used in our quantitative application. At one extreme, when the firm’s marginal cost is
equal to the choke price, it sets a price at marginal cost. Firms with even higher marginal cost
do not participate in the market. At the other extreme, very productive firms with marginal
cost approaching zero have markings approaching s

s�1 .Thus, the key parameter is s, which
parsimoniously captures the relationship between firm productivity, size, and markup.

Finally, the statistic necessary to establish whether SCD-C holds for a given CDCP (cf. Section

23See, for example, Simonovska (2015), Arkolakis et al. (2019), and Behrens et al. (2020).
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OA.3.2) takes the convenient form:

#q(pn(w))
d ln pn(w)

d ln cin(w)
=

s

1 � (pn(w)/P?
n )

s
| {z }

Demand Elasticity

(s � 1) + (pn(w)/P?
n )

s

(s � 1) + (s + 1) (pn(w)/P?
n )

s
| {z }

Passthrough

� s.

The lower bound s makes it straightforward verify if the firm’s problem satisfies both SCD-C
from below and SCD-T. In particular, in our quantitative application, as long as s is large enough
to exceed 1 + q, the firm problem exhibits both SCD-C from below and SCD-T, both with the
Pollak and CES demand systems.

OA.6 CDCPs in the Literature

In this section, we present two CDCPs from the literature and show that they satisfy our SCD-C
condition. First, we introduce the simple plant location problem, a canonical, NP-hard problem
in the operations research literature. Second, we show that a version of the firm problem in
Arkolakis et al. (2018) with fixed costs is a CDCP that satisfies SCD-C.

OA.6.1 The Simple Plant Location Problem

The Simple Plant Location Problem (“SPLP”) or Un-capacitated Plant Location Problem (“UPLP”)
refers to a general class of operation research problems concerned with the optimal choice of
production locations to minimize transportation costs while serving a set of spatially distributed
demand points. The SPLP is a canonical problem in Operations Research (e.g., p-Center and
p-Median problems) (see Krarup and Pruzan (1983), Cornuéjols et al. (1983), Owen and Daskin
(1998), and Verter (2011) for surveys). While the problem has been shown to be NP-hard, there
are many heuristic solution methods.

In this section, we show that the SPLP can be expressed as a CDCP as in Definition 1 that satisfies
the SCD-C property and can hence be solved using our methods.

We outline the setup of the SPLP as outlined in Balinski (1965). Consider an economy with
L of potential facility locations and a set N demand points. Opening a production facility in
location ` incurs a fixed cost f` � 0. The marginal cost of serving destination n from the facility
in some location ` is c`n � 0. Each location demands the same fixed quantity of the good and all
locations need to be served. The Boolean choice variable is l`n which is 1 if market n is served
from location ` and zero otherwise. The SPLP is formulated as the problem of minimizing the
total cost of serving all demand points:

min
{l`n}`2L,n2N

Ầ
2L

Â
n2N

c`nl`n + Ầ
2L

f`q` (OA.6)
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subject to Ầ
2L

l`n = 1 8n

q` � l`n 8`, n

l`n, q` 2 {0, 1} 8`, n

The equality constraint is imposed to ensure each market is served by exactly one production
site; the inequality constraint ensures that the relevant fixed costs are paid for every production
location in operation.

We rewrite the above SPLP to show that it fits our definition of a CDCP. First, we define
c0`n = max` f` + max`n c`n � c`n. We denote by L the set of production locations, so that
L ✓ L.For a given production location set L the profit from a producing in location ` is then
given by:

p`(L) = (` 2 L)
"

Â
n2N

c0`n

✓
max
k2L

c0kn  c0`n

◆
� f`

#
(OA.7)

The firms overall profit is the sum of the profits of all its production locations, i.e., p(L) =

Â`2L p`(L). The problem in equation (OA.6) can then be written as

L?
= arg max

L2L
p(L),

which corresponds to Definition 1. Note that the definition of c0`n above ensures that at least one
production location always operates and that every demand point is always served.

Next, we show that the firm’s objective satisfies the SCD-C property. In fact, it satisfies the
stronger “submodularity” property which is sufficient for SCD-C from above. From the per-
spective of the firm, adding an additional production location always weakly decrease the
number of demand points served by any previously existing production location. As a re-
sult, the location-specific profit in equation (OA.7) is weakly decreasing in the total number of
production locations. To see this formally, consider the following Lemma:

Lemma 1. The profit function in the simple plant location problem is submodular.

Proof. Consider two sets ∆ ⇢ L2 ⇢ L1 ✓ L. But then notice that for some facility location
` 2 L2:

p`(L1) = (` 2 L1)

"

Â
n2N

c0`n

✓
max
k2L1

c0kn  c0`n

◆
� fl

#

 (i 2 L2)

"

Â
n2N

c0`n

✓
max
k2L2

c0kn  c0`n

◆
� f`

#
= p`(L2)

where the inequality holds since maxk2L2 c0kn  maxk2L1 c0kn. Now consider two different sets,
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L0
1 = L1\k and L0

2 = L2\k where k 2 L2 . But then

p`(L0
1)  p`(L0

2)

But then since inequalities are closed under addition:

p`(L1)� p`(L0
1)  p`(L2)� p`(L0

2)

so that the profit of the facility in location `, p`, is submodular on the set L. Since the sub-
modularity property is closed under addition, the overall profit function, p(L) = Â`2L p`, is
submodular on the set L.

OA.6.2 The Firm Problem in Arkolakis et al. (2018)

For a given set of markets N, the firm problem that appears in Arkolakis et al. (2018) is combi-
natorial since the marginal value of each production location depends on the other available
production locations. However, it is a trivial problem since there are no fixed costs. Accordingly,
the marginal value of each production location is never negative under any circumstances, so
firms operate in all locations.

If fixed costs are incorporated in the firm decision, so that the firm headquartered in i must pay
a fixed cost fi` to operate a production location in `, expected profit function is then

pi (L, z) = Â
n2N

Xn

✓
s

s � 1
cin (L, z)

◆1�s

� Â
`2L

fi` , cin (L, z) = min
`2L

gi`w`d`n
z`

.

Accordingly, the marginal value of a production location ` is

D`pi (L, z) = Â
n2N

✓
s

s � 1

◆1�s h
cin (L [ {`} , z)

1�s � cin (L \ {`} , z)
1�s
i
� fi`.

To establish monotone substitutes, we compare this marginal value for two arbitrary production
location sets L1 ✓ L2, and argue that the marginal benefit to L1 must exceed the marginal
benefit to L2. We begin by note that, for each destination market n,

0 < cin (L [ {`} , z)
1�s � cin (L \ {`} , z)

1�s , ` = arg min
`2L[{`}

gi`w`d`n
z`

.

Then, we can identify the locations ñ for which ` is the least-cost location as

Ñ2 ⌘
⇢

ñ 2 N | ` = arg min
`2L2[{`}

gi`w`d`ñ
z`

�
.
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Note that, for any ñ 2 Ñ,

ciñ (L2 [ {`} , z)
1�s � ciñ (L2 \ {`} , z)

1�s � 0.

Considering this difference for L1, note that ` must also be the least-cost supplier, since L1 ✓ L2.
Thus,

ciñ (L2 [ {`} , z)
1�s

= ciñ (L1 [ {`} , z)
1�s .

On the other hand,

min
`2L1\{`}

gi`w`d`ñ
z`

� min
`2L2\{`}

gi`w`d`ñ
z`

) ciñ (L1 [ {`} , z)
1�s  ciñ (L2 [ {`} , z)

1�s

since the best supplier in L2 \ {`} may not be included in L1 \ {`}. Put together,

ciñ (L2 [ {`} , z)
1�s � ciñ (L2 \ {`} , z)

1�s  ciñ (L1 [ {`} , z)
1�s � ciñ (L1 \ {`} , z)

1�s .

Next, consider any n0 2 Ñc
2, and note that ` is not the least cost-supplier. Then,

`0 ⌘ arg min
`2L2[{`}

gi`w`d`n0

z`
6= `

) `0 = arg min
`2L2\{`}

gi`w`d`n0

z`
) 0 = cin0 (L2 [ {`} , z)

1�s � cin0 (L2 \ {`} , z)
1�s

.

Intuitively, adding ` to L2 does not provide the firm any benefit for market n0, since it is not the
least-cost supplier. However, the firm can always do weakly better in market n0 if ` is added to
L1 \ {`}. In other words,

min
`2L1\{`}

gi`w`d`n0

z`
� min

`2L1[{`}

gi`w`d`n0

z`
) ciñ (L1 [ {`} , z)

1�s  ciñ (L2 [ {`} , z)
1�s

.
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Putting everything together,

D`pi (L2, z) = Â
n2N

✓
s

s � 1

◆1�s h
cin (L2 [ {`} , z)

1�s � cin (L2 \ {`} , z)
1�s
i
� fi`

= Â
ñ2Ñ2

✓
s

s � 1

◆1�s h
ciñ (L2 [ {`} , z)

1�s � ciñ (L2 \ {`} , z)
1�s
i
� fi`

 Â
ñ2Ñ2

✓
s

s � 1

◆1�s h
ciñ (L1 [ {`} , z)

1�s � ciñ (L1 \ {`} , z)
1�s
i
� fi`

 Â
n2N

✓
s

s � 1

◆1�s h
cin (L1 [ {`} , z)

1�s � cin (L1 \ {`} , z)
1�s
i
� fi` = D`pi (L1, z)

.

Thus, the firm’s profit function displays monotone substitutes, and thus SCD-C from below.

OA.7 Additional Technical Discussion

In this section, we offer a technical discussion of our squeezing algorithm and compare it directly
to the procedure outlined in Jia (2008). We first rewrite our algorithm using lattice algebra to
make it directly comparable to the method in Jia (2008).

OA.7.1 Comparison with Jia (2008)

Jia (2008) introduced a “reduction method” for supermodular CDCPs to reduce the set of
potentially optimal strategies iteratively. Jia (2008) outlines this method using lattice algebra.
In this section, for direct comparison with Jia (2008), we first translate our definition of CDCPs
which uses power sets of discrete sets into lattice notation and then demonstrate our contribution
relative to Jia (2008). Since Jia (2008) only discusses the CDCP of a single agent, we abstract from
type heterogeneity throughout this section.

CDCPs on a Lattice Consider a CDCP as in Definition 1: an agent maximizes the return
function p(·) by choosing L 2 P(L) where L is a discrete set. We denote the return-function-
maximizing set by L?, so that L?

= arg maxL2P(L) p(L).
We construct an isomorphic problem in which the agent chooses elements from the Boolean
lattice to maximize the same return function. First, we assign a unique index number i = 1, . . . , N
to every element in the discrete set L. Second, we construct a function g : BN ! P(L) that
maps from the Boolean lattice of dimension N, BN, to the power set of P(L). In particular, g
assigns to any element L 2P(L) the Boolean vector I such that Ii = 1 if the element with index
number i is contained in L and Ii = 0 otherwise.

Third, we define a transformed return function p̃ : BN 7! R, s.t. p̃(·) = p(g(·)). The problem
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of finding the element I? = arg maxI2BN p̃(I) of the Boolean lattice is identical to the problem
of finding L?

= arg maxL2P(L) p̃(L) and g(I?) = L? holds by construction. Importantly, the
set of all Boolean vectors in BN along with the “pairwise comparison“ norm, whereby I  I0 if
and only if I`  I0` 8`, forms a complete lattice denoted by U = hBN ,i.24 Also note that a vector
I? always exists since BN is a finite and complete lattice which always contains (at least) one
vector for which p̃(·) obtains its largest value over BN.

Jia (2008) presented an iterative algorithm that narrows the set of potential solution vector
I 2 BN of the CDCP as long as p̃(·) exhibits supermodularity. We now introduce the iterative
mapping at the heart of the approach in Jia (2008).

Constructing a Function with a Guaranteed Fixed Point Consider a Boolean vector I 2
BN.Denote I = {I1, . . . , IN} where Ii is the value of the nth entry of the vector I.Using this
notation, the optimality of I? implies that:

p̃({I?1 , ..., I?i , ..., I?n}) � p̃({I?1 , ..., Ii, ..., I?n}) 8i. (OA.8)

Introducing a Boolean version of the marginal value operator (cf. Definition 2), equation (OA.8)
implies the following for the optimal vector I?:

I?i =

8
<

:
1 if Dip̃ � 0

0 if Dip̃ < 0
.

Now define the following mapping L : BN 7! BN such that

Ik+1
= L(Ik

) = {L1(Ik
), . . . , LN(Ik

)} where Li(Ik
) = Ik+1

i = 1[Dip(Ik
) � 0], (OA.9)

and k indexes the number of times the function has been applied to some initializing vector I0.
Importantly, by construction, the return-function maximizing vector I? is a fixed point of L,
so that I? = L(I?). However, the mapping L may have (many) other fixed points in addition
to I?. Next, we show the role of the supermodularity assumption in Jia (2008) in allowing a
characterization of the set of fixed points of L.

Jia (2008) and the Role of Supermodularity The assumption in Jia (2008) that gives rise to the
CDCP reduction method is that the return function p̃(·) exhibits the supermodularity property.
Under the supermodularity assumption, for two ordered Boolean vectors I  I0 2 BN,

Dip̃ (I)  Dip̃
�

I0
�

8i = 1, . . . , N.

24See Kusraev and Kutateladze (2012) for a discussion of general results in Boolean valued analysis.
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As a result, the function L is increasing over the partially ordered set BN (alternative names
for such functions are order-preserving, isotone, and monotone functions). In particular for
any I  I0 2 Bn it is easy to see that L(I)  L(I0) 2 Bn, so the order of the two vectors is
preserved by the application of the map. The “increasing” property of the mapping L implied
by the supermodularity assumption allows Jia (2008) to invoke the main theorem of Tarski (1955)
which we restate here for convenience:

Theorem 3. Let

(1) U = hA,i be a complete lattice.

(2) f be an increasing function from A to A

(3) P be the set of all fixed points of f

Then the set P is not empty and the system hP,i is a complete lattice.

Tarski’s theorem implies that the function L has at least one fixed point, and that the set of all its
fixed points forms a complete lattice.

In the context of our CDCP, the importance of Tarski’s theorem is not that it proves the existence
of a fixed point (since I? is a fixed point of the mapping L by construction), but that it shows
that the set of all fixed points of L, P, forms a complete lattice. The complete lattice property
of the set of fixed points P implies that the set P has an upper and lower bound, IUB := sup P
and ILB := inf P which bound the optimal vector, i.e.,ILB  I?  IUB. The Jia (2008) reduction
method identifies the set P of fixed points by identifying its least and its greatest element.
Finding the return-function-maximizing vector in P is usually easier than finding it in BN since
P is a subset of BN. We briefly describe how to find the least and greatest element of P. By
definition, for any I 2 P:

L(I) = I.

Consider the least fixed point in ILB 2 P. Note that for all I 2 P, ILB  I by definition. Now
consider the vector of all zeros I0 = [0, . . . , 0] = infBN. and note:

I0  ILB  I?.

Since the mapping L is increasing:

I1
= L(I0)  L(ILB

) = ILB.

Applying the mapping L K  N times to the vector I0 eventually yields ILB.

IK
= L(IK�1

) = ILB.

The insight in Jia (2008) is that as long as the mapping L is increasing, starting with the least
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element in BN and iterating is guaranteed to identify ILB since applying an increasing mapping
to two ordered vectors always preserves their order. At each iteration, at least one additional
entry in Ik is set to 1 and, since L is increasing, it never reverts back to 0 in any subsequent
application of L. As a corollary, finding ILBnever takes more than N iterations. In a similar way,
iteratively applying L to I1 = supBN

= [1, . . . , 1] identifies IUB.

The first contribution of our paper is to show that the above argument also applies to return
functions p̃ that satisfy single crossing differences from below, a condition that is weaker than
the supermodularity assumption imposed in Jia (2008). A function p̃ satisfies single crossing
differences from below, if for all i and decision sets I  I0 2 BN,

Dip (I) � 0 ) Dip
�

I0
�
� 0.

The SCD-C from below property is necessary and sufficient for the mapping L to be increasing,
whereas the supermodularity property is merely sufficient. As long as the mapping L remains
increasing, the above argument for identifying ILB and IUB remains valid.

A Submodular Return Function Now suppose that the return function obeys single crossing
differences in choices from above (or negative complementarities) such that, for all i and decision
sets I  I0 2 Bn,

Dip
�

I0
�
� 0 ) Dip (I) � 0.

If the return function satisfies SCD-C form above, the mapping L defined in equation (OA.9)
is no longer order-preserving (increasing) but order-reversing (decreasing) and the Tarski
(1955) theorem no longer applies. This insight has stalled progress on solving problems with
negative complementarities in the economics literature on multinational production despite
their prevalence.

The central result in our paper is to demonstrate that the iterative application of L still identifies
the greatest and least element of a set P ✓ BN such that I? 2 P when the underlying return
function satisfies SCD-C from above.

To show this, we require a generalization of the concept of the fixed point to that of the fixed edge
(see Klimeš (1981)):

Definition 10. Let f be a mapping of a partially ordered set U into itself and let x  y be the
elements of U. An ordered pair (x, y) is called a fixed edge of f if f (x) = y and f (y) = x.

Intuitively, a fixed edge of a mapping are two points between which the mapping alternates.
All fixed points are (degenerate) fixed edges.25 Theorem 9 in Klimeš (1981) states the following
Tarski-like theorem for decreasing functions:

25For increasing functions, all fixed edges are also fixed points.
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Theorem 4. Let

(1) U = hA,i be a complete lattice.

(2) f be a weakly decreasing function from A to A

(3) P be the set of all fixed edges of f

Then the set P is not empty and the system hP,i is a complete lattice.

The theorem establishes that any decreasing mapping has a set of fixed edges that is itself a
complete lattice. The set of fixed points of f is a subset of the set of fixed edges of f . Importantly,
Theorem 4 shows that there exists a maximal element IUBand a minimal element ILB in P such
that (IUB, f (IUB

)) and (ILB, f (ILB
)) are fixed edges of the function f .

To build intuition for the Klimeš (1981) theorem, consider the mapping defined in equation
(OA.9) above, applied to a profit function p that satisfies SCD-C from above. It is straightforward
to show that L is a decreasing mapping in this case. We denote the set of its fixed edges by PL.
Define an auxiliary function f = L(L(·)) and denote the set of fixed points of f by Pf . It is easy
to show that f is an increasing function on the same domain. As a result, the theorem in Tarski
(1955) applies to f so that Pf is a non-empty and complete lattice.

First, note that trivially any fixed point of L is also a fixed point of g since:

I = L(I) ) I = L(L(I)) = f (I),

so that the set of fixed points of L is a subset of the set of fixed points of f , i.e., PL ✓ Pf .
Conversely, for any fixed point I of f , we know that

I = f (I) = L(L(I)) := L(I0).

But then (I, I0) form a fixed edge of L.So all elements in Pf are fixed edges of L, in other words
PL = Pf . Consequently, applying the same algorithm as in Jia (2008) identifies the set of fixed
points Pf of the auxiliary mapping. If Pf is a singleton, we have identified I?; if Pf ⇢ BN, we
have reduced the number of potential solutions to the CDCP.

Our squeezing step in the main body of the paper leverages these insights to create a mapping
of the power set of a discrete set into itself that is always increasing. In the next section, we
present a lattice-based formulation of our squeezing step.

OA.7.2 Lattice Formulation of Main Result

We present a version of the squeezing step in Definition 5 that uses lattice algebra:

Definition. Consider a sublattice of the Boolean lattice I ✓ BN and the set of all its sublattices
denoted by S(I). Then we define the following two sets:
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Ḡ1(I) = {i : Dip(sup I) < 0} and G1(I) = {i : Dip(inf I) � 0}

Then, we define the mapping E1 : S(I) ! S(I) as

E1(I) = {I 2 I : Ii = 0 and Ij = 1, 8i 2 Ḡ1(I), 8j 2 G1(I)}.

Similarly, we define the following two sets:

Ḡ2(I) = {i : Dip(sup I) > 0} and G2(I) = {i : Dip(inf I)  0}

And the mapping E2 : S(I) ! S(I) as

E2(I) = {I 2 I : Ii = 1 and Ij = 0, 8i 2 Ḡ2(I), 8j 2 G2(I)}.

The mapping E1 is an increasing mapping if p̃ exhibits SCD-C from below (or is supermodular.)
Likewise, E2 is an increasing mapping if p̃ exhibits SCD-C from above (or is submodular). In
these cases, the main theorem in Tarski (1955) (cf. Theorem 3) then applies to both E1 and E2.
Iterating on E1 or E2 converges to a set of vectors IK which form a complete lattice. We can
define ILB

= inf IK and IUB
= sup IK , which are vectors such that ILB ✓ P ✓ IUB. Note that

different from the function L defined in Jia (2008), the two mappings defined in the squeezing
step are always increasing as long as the return function satisfies the appropriate version of
SCD-C.

OA.7.3 Determinants of the Effectiveness of the Algorithm

In Section (5.4), we provided computational results for the convergence speed of the squeezing
and branching algorithms. We showed that computational time generally increases as we
moved from positive to negative complementarities. The lattice-based analysis in Section
(OA.7.1) provides some intuition for why this is the case: with negative complementarities (SCD-
C from above), the set of potential solutions contains not just fixed points but also fixed edges
and hence tends to be larger. In this section, we use a simple example CDCP to illustrate the role
of the distribution of location-specific payoffs (“geography”) and the type of complementarity
for the effectiveness of the algorithm. Instead of applying the squeezing step, we instead apply
the mapping in equation (OA.9) since it is easier to write out its individual steps. However, the
intuition behind the convergence of the squeezing step and the mapping in equation (OA.9) is
the same.

As an example objective function, we use a simplified version of the objective function in Jia
(2008). Consider a firm that maximizes a return function p by choosing a Boolean vector of
dimension N, I 2 BN, and the profit associated with each decision vector is given by the
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following function:

p(I) = Â
i=1,...,N

pi where pi = Ii

 
Ai + g Â

k 6=i
Ik

!
, (OA.10)

where p denotes the agent’s total return, pi denotes the total return associated with entry i of the
decision vector, the term Ai denotes the exogenous part of the return associated with entry i of
the decision vector, and g parameterizes the effect of other entries k 6= i on the return associated
with entry i. Notice that if Ii = 0 then pi = 0 always. We refer to each i as a “location” so that
the return function in equation (OA.10) could be that of a firm choosing a set of production
locations.

There are two parameters that determine the shape of p(·): g and {Ai}i. The parameter g

determines whether the return function exhibits SCD-C from above or below. If g > 0, the
firm’s objective function p(·) exhibits SCD-C from below or positive complementarities among
locations; if the objective function exhibits SCD-C from above. The vector of “exogenous” returns
{Ai}i determines the return to each location in the absence of any complementarities among
locations.

We consider four different parameterizations of the return function in equation (OA.10) to
illustrate the role of the two types of complementarities and the differences between two
different types of stylized “geographies,” or structures of payoffs across locations that we refer
to as “cities” versus “countries.” In the city geography, there is a hierarchy of locations in
terms of Ai: a “central” location with a maximum Ai and then more and more remote regions
with increasingly lower values of Ai mimicking, e.g., agglomeration economies that decay with
distance from an urban center.The country geography setup features several locations with the
same exogenous return Ai reflecting that there are several countries with similar productivities,
e.g., the France and Germany may have a similar Ai while Chile and Argentina have Ai terms
that are similar to one another but different from those of France and Germany. For both the city
and country setups, we consider the case of SCD-C from below and above separately.

For simplicity, we assume a total of only six distinct locations i = 1, ..., 6 and show the explicit
steps of obtaining a lower bound on the set of fixed fixed edges by iteratively applying the
mapping in equation (OA.9).

Setup #1: City Geography and SCD-C From Below We set the exogenous return in equation
(OA.10) equal to Ai = i � 3 and assume the return function exhibits SCD-C from below with
g = 1.But then applying the mapping from equation (OA.9) three times to the vector of all zeros,
I0, identifies the least element of the set of fixed points of the mapping:

I1 := L(I0) = [0, 0, 1, 1, 1, 1]
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I2 := L(I1
) = [1, 1, 1, 1, 1, 1]

ILB
= I3 := L(I2

) = [1, 1, 1, 1, 1, 1] = I2

so that the fixed point is found after three iterations. Starting from the vector of all 1s, I1 :

IUB
= I1 := L(I1) = [1, 1, 1, 1, 1, 1]

So that ILB
= IUB

= I?.

Setup #2: City Geography and SCD-C From Above We set the exogenous return in equation
(OA.10) equal to Ai = i � 3 and assume the return function exhibits SCD-C from above with
g = �1. But then applying the mapping from equation (OA.9) three times to the vector of all
zeros, I0, identifies the least element of the set of fixed points of the mapping:

I1 := L(I0) = [0, 0, 1, 1, 1, 1]

I2 := L(I1
) = [0, 0, 0, 0, 0, 1]

I3 := L(I2
) = [0, 0, 0, 1, 1, 1]

I4 := L(I3
) = [0, 0, 0, 0, 1, 1]

ILB
= I5 := L(I4

) = [0, 0, 0, 0, 1, 1] = I4

so that the fixed point is found after five iterations.Starting from the vector of all 1s, I1 :

I1 := L(I0) = [0, 0, 0, 0, 0, 0]

I2 := L(I1
) = [0, 0, 1, 1, 1, 1]

I3 := L(I2
) = [0, 0, 0, 0, 0, 1]

I4 := L(I3
) = [0, 0, 0, 1, 1, 1]

I5 := L(I4
) = [0, 0, 0, 0, 1, 1]

IUB
= I6 := L(I5

) = [0, 0, 0, 0, 1, 1] = I5

So that ILB
= IUB

= I?.

Setup #3: Country Geography and SCD-C From Below We set the exogenous return in
equation (OA.10) equal to Ai = �4 8 i 2 [1, 2] and Ai = �2 8 i 2 [3, 4] and Ai = 0 8 i 2 [5, 6].
We also assume the return function exhibits SCD-C from below with g = 1. But then applying
the mapping from equation (OA.9) three times to the vector of all zeros, I0, identifies the least
element of the set of fixed points of the mapping:

I1 := L(I0) = [0, 0, 0, 0, 1, 1]
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I2 := L(I1
) = [0, 0, 1, 1, 1, 1]

I3 := L(I2
) = [1, 1, 1, 1, 1, 1] = I2

ILB
= I4 := L(I3

) = [1, 1, 1, 1, 1, 1] = I3

so that the fixed point is found after three iterations. Starting from the vector of all 1s, I1 :

IUB
= I1 := L(I1) = [1, 1, 1, 1, 1, 1] = I1

So that ILB
= IUB

= I?.

Setup #4: Country Geography and SCD-C From Above We set the exogenous return in
equation (OA.10) equal to Ai = �4 8 i 2 [1, 2] and Ai = �2 8 i 2 [3, 4] and Ai = 0 8 i 2 [5, 6].
We also assume the return function exhibits SCD-C from above with g = �1. But then applying
the mapping from equation (OA.9) three times to the vector of all zeros, I0, identifies the least
element of the set of fixed points of the mapping:

I1 := L(I0) = [0, 0, 0, 0, 1, 1]

I2 := L(I1
) = [0, 0, 0, 0, 0, 0]

I3 := L(I2
) = [0, 0, 0, 0, 1, 1]

ILB
= I4 := L(I3

) = [0, 0, 0, 0, 0, 0] = I2

so that a fixed edge is found after three iterations. Starting from the vector of all 1s, I1 :

I1 := L(I1) = [1, 1, 1, 1, 1, 1]

I2 := L(I1
) = [0, 0, 0, 0, 1, 1]

I3 := L(I2
) = [0, 0, 0, 0, 0, 0]

IUB
= I4 := L(I3

) = [0, 0, 0, 0, 1, 1] = I2

So that again we find a fixed edge. In fact, the upper and lower bound are part of the same fixed
edge, so that ILB 6= IUB and ILB  I?  IUB. The profit function maximizing vector must be
one of the two vectors enveloped by the fixed edge: [0, 0, 0, 0, 1, 0] or [0, 0, 0, 0, 0, 1]. We know
that both of them have to be fixed points, not fixed edges.

Discussion Three important performance metrics for the squeezing step are the following: (1)
how often it needs to be applied before convergence, (2) how tight the resulting bounds are,
and (3) whether the bounds are fixed edges or fixed points. Intuitively, tighter bounds mean
less additional work in identifying the optimal vector. Likewise, if the bounds are fixed edges,
there is no chance for the bounds to coincide with the optimal vector. We can evaluate the above
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example along these three criteria.

The comparison within geography types yields the following insights: (1) With SCD-C from
below, the mapping converges faster. Intuitively, with SCD-C from below, all changes in entries
are in “one direction,” whereas for SCD-C from above, entries change back and forth. (2) With
SCD–C from below, the mapping converges to tighter bounds. (3) With SCD-C from below, fixed
edges never occur. Fixed edges are a nuisance since they are not fixed points but can prevent
the mapping from reaching a fixed point if it gets stuck in a fixed edge. Furthermore, realizing a
point is a fixed edge takes two iterations.

The comparison within complementarity types yields the following insights: (1) City-type
geographies converge faster for both types of SCD-C. Intuitively, the clear location hierarchy
makes it easier to determine which locations are profitable. (2) City-type geographies have
tighter bounds. (3) Country-type geographies are more likely to lead to fixed edges since they
have several equally valued locations, not all of which are included in the optimal vector, leading
the iteration to result in a fixed edge.

OA.8 Model Fit and Counterfactual Results for Alternative

Model Calibrations

In this section, we present results for alternative calibrations of the model. We show the
calibration outcomes and counterfactuals for two version of the models calibrated with q = 7.5
and q = 2.5. We also present the calibration and counterfactual analysis for a version of our
model without fixed costs.

OA.8.1 Alternative Values for q

In this section, we present the model fit of two alternative calibrations of the model which use
different values for the dispersion (1/q) of location-input-specific productivity shocks. We also
present the main results of the counterfactual exercises using these alternative calibrations of
our model.

Calibration In addition to our baseline specification, we re-estimate the model with alternative
values of q, as discussed in Section 5.2. Our first alternative value of q comes from Head and
Mayer (2019), who set q = 7.5 which leads to an even stronger negative complementarity than in
our baseline calibration. The second alternative value for q we use is q = 2.5 which we include
to show a calibration that implies positive complementarities among production locations. In
both calibrations, we match all targeted moments exactly. Table OA.3 reports the estimated
model’s fit of a set of untargeted moments.Figures (OA.5), (OA.6), and (OA.7) show additional
measures of fit of the model.
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Overall, the calibration with q = 7.5 exhibits a similar fit as the baseline calibration. The
fit of the inward affiliate shares is somewhat better than in our baseline calibration, but the
baseline calibration matches the outward trade (export) shares and outward MP (foreign affiliate
production) shares better. The calibration with q = 2.5 performs worse than the baseline
calibration on the inward affiliate shares.

Counterfactuals In this section, we replicate all the main graphs from the counterfactual
section using the two alternative calibrations of the model that draw on different values of q.
Figure OA.8 shows the real wage responses in our Brexit counterfactual.The top panel show
the results for the model calibrated with q = 7.5 and the bottom panel for the calibration where
q = 2.5. Figure OA.9 shows the total and percentage changes in the count of affiliates in our
Brexit counterfactual.The top two panels show the results for the model calibrated with q = 7.5
and the bottom two panels for the calibration where q = 2.5. Figure OA.10 shows the real
wages responses to the sanctions war.The top panel show the results for the model calibrated
with q = 7.5 and the bottom panel for the calibration where q = 2.5. Figure OA.11 shows the
affiliate relocation responses for the sanctions war counterfactual. The top two panels show
the results for the model calibrated with q = 7.5 and the bottom two panels for the calibration
where q = 2.5.

OA.8.2 The Model without Fixed Costs

In this section, we present the model fit of the calibration of our model without fixed costs. We
also present the main results of the counterfactual exercises in the calibrated model without
fixed costs.

Calibration Table OA.4 shows the untargeted moments. Figure OA.12 shows the trade and
inward MP shares in the data and model. Figure OA.13 shows the same histogram for trade
costs and MP costs as in the main body of the paper; since fixed costs are set to zero they do not
appear in the graph. Figure OA.14 shows the calibrated technology and fixed cost parameters
for the model without fixed costs.

Counterfactuals Figure OA.15 shows the impact of Brexit on real wages in all countries in the
model calibration without fixed costs. Figure OA.16 shows the total and percentage changes in
the count of affiliates in the Brexit counterfactual in the version of the model without fixed costs.
Figure OA.17 shows the change in the number of affiliates, in thousands, in the counterfactual
in which we impose sanctions on Russia in the model calibration without fixed costs. Figure
OA.18 shows the impact of sanctions on Russia in the model calibration without fixed costs.
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Table OA.3: Untargeted Moments for Alternative q Calibrations

q = 7.5 q = 2.5

Inward Outward Inward Outward

Data Model Data Model Data Model Data Model

Panel A: Foreign Trade Shares

Mean 0.011 0.011 0.010 0.011 0.011 0.011 0.010 0.011
SD 0.023 0.020 0.023 0.021 0.023 0.020 0.023 0.021
Corr 0.822 0.817 0.823 0.824
R2 0.676 0.667 0.677 0.678

Panel B: Foreign MP Shares

Mean 0.009 0.009 0.006 0.006 0.009 0.009 0.006 0.006
SD 0.026 0.027 0.015 0.015 0.026 0.027 0.015 0.016
Corr 0.728 0.714 0.721 0.726
R2 0.530 0.510 0.519 0.528

Panel C: Foreign Affiliate Shares

Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SD 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
Corr 0.792 0.830 0.682 0.835
R2 0.628 0.690 0.465 0.697

Notes: The figure shows various moments not targeted in the calibration in both calibrated model and data for
two different calibrations one using q = 7.5 the other q = 2.5. To compute all moments, we drop the diagonals
of all bilateral matrices. While we target the coefficients on gravity variables Table 1, we do not directly target
the full matrix of foreign trade, MP, or affiliate shares. The inward shares are such that they sum to 1 if added
by destination, across origin. For example, inwards trade shares break down each destination market’s imports
by import origin. Outwards shares sum to 1 if added by origin, across destination. For example, outwards trade
shares break down each production country’s exports by export destination.
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Figure OA.5: Trade Shares, Inward MP Shares, and Inward Affiliate Shares in Data and Model
for Alternative q Calibrations (Top: q = 7.5; Bottom: q = 2.5)

Notes: The figures shows graphs statistics from the data obtained from Alviarez (2019) against the same objects in
two alternative calibrations of the model, one for q = 7.5 the other for q = 2.5. The top panel shows output from a
model calibrated using q = 7.5, the bottom panel shows output from a calibration with q = 2.5. In each row, the left
panel shows trade shares, the second panel shows inward MP shares, and the third panel shows inward affiliate
shares.
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Figure OA.6: Trade Costs, MP Costs, and the Bilateral Component Fixed Cost for Alternative q
Calibrations(Top: q = 7.5; Bottom: q = 2.5)

Notes: The figure shows a histogram of our calibrated MP costs, trade costs, and the bilateral component of fixed
costs in two alternative calibrations of the model. The top panel shows values for a calibration that uses q = 7.5,
the bottom panel for a calibration that uses q = 2.5. We omit the own-costs which are normalized to 1 for all three
types of costs. For MP and fixed costs, we also omit country pairs where MP is zero, since we set the MP costs to be
infinity in those cases.
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Figure OA.7: Technology, the Base Component of Fixed Costs, and Entry Costs for Alternative q
Calibrations (Top: q = 7.5; Bottom: q = 2.5)

Notes: The figure shows a number of calibrated shifters in alternative calibrations of the model, one with q = 7.5
and one with q = 2.5. The top panels are form a calibration using q = 7.5, the bottom panel from a calibration
using q = 2.5. The left panel in each row graphs the Pareto minimum zx/(s�1)

i of the firm productivity distribution
against the scale T` of the Fréchet distribution of location-input-specific productivity shocks. The terms zx/(s�1)

i
and T` appear multiplicatively in the expression for trilateral flows. The right panel in each row plots the entry cost
f e
i against the base component of the fixed cost fi.
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Figure OA.8: Real Wages Changes Across Countries in the Brexit Simulation for Alternative q
Calibrations (Top: q = 7.5; Bottom: q = 2.5)

Notes: The figures shows the change in real wage in our Brexit simulation for two alternative calibrations one with
q = 7.5 and one with q = 2.5. The top panel is for the case of q = 7.5, the bottom panel for the case of q = 2.5. The
effect on EU member countries is shown in green, the effect on non-EU countries is shown in yellow, and the effect
on Great Britain is shown in purple. In the first panel, only trade costs increase by 10%, the second panel adds a
10% increase of the MP costs, and the third adds a 10% increase in the fixed costs. The fourth panel considers the
trade and fixed cost increases in isolation.
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Figure OA.9: Net (Percentage) Changes in Affiliate Counts by Sender and Host Country in the
Brexit Simulation for Alternative q Calibrations (Top: q = 7.5; Bottom: q = 2.5)

Notes: The left panels of the figure shows the absolute change and percentage change (top and bottom) in the
number of affiliates operated by firms headquartered in the EU in non-EU countries, EU countries, and in Great
Britain in the Brexit simulation for two alternative calibrations of the model one with q = 7.5 and one with q = 2.5.
The right panel shows the change in the number of affiliates operated by firms headquartered in Great Britain in
non-EU countries, EU countries, and in Great Britain.The top panels are for the case of q = 7.5, the bottom panels
are for the case of q = 2.5. The blue bar reflects a 10% trade costs increase, the purple bar adds a 10% increase of
the MP costs, the orange bar adds a 10% increase in fixed costs. The yellow bar considers the trade and fixed cost
increases in isolation.
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Figure OA.10: Real Wages Changes Across Countries in the Sanctions on Russia Simulation for
Alternative q Calibrations (Top: q = 7.5; Bottom: q = 2.5)

Notes: The figures shows the change in real wage in our Sanctions on Russia simulation for two alternative
calibrations one with q = 7.5 and one with q = 2.5. The top panel is for the case of q = 7.5, the bottom panel
for the case of q = 2.5. The effect on countries imposing sanctions on Russia is shown in green, the effect on
non-sanctioning countries is shown in yellow, and the effect on Russia is shown in purple. In the first panel, only
MP costs increase by 30% while the second panel adds a 30% increase of the fixed costs. In the third panel, we
set MP cost to infinity. The fourth panel shows the case in which only fixed costs increase by 30%relative to the
baseline.
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Figure OA.11: Net (Percentage) Changes in Affiliate Counts by Sender and Host Country in the
Sanctions on Russia Simulation for Alternative q Calibrations (Top: q = 7.5; Bottom: q = 2.5)

Notes: The figure shows the total change and percentage change in the number of affiliates operated by firms
headquartered in countries that placed sanctions to Russia in Russia itself, within the territory of the sanctioning
countries, and in third party countries for two alternative calibrations of the model one with q = 7.5 and one with
q = 2.5. The top panels are for the case of q = 7.5, the bottom panels are for the case of q = 2.5. The leftmost panel
in each row of the figure shows the change in the number of affiliates operated by firms headquartered in countries
that placed sanctions to Russia in Russia itself, within the territory of the sanctioning countries, and in third party
countries. The second panel from the left in each row of the figure shows the change in the number of affiliates
operated by firms headquartered in Russia in Russia itself, within the territory of the sanctioning countries, and
in third party countries. The third panel and fourth panel in each row of the figure show the same changes in
percentage terms. The blue bar refers to a counterfactual with a 30% increase in the cost of MP, the purple bar adds
a 30% increase in the fixed costs, the fourth (yellow) bar sets the MP cost to infinity.
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Table OA.4: Untargeted Moments for the Calibration Without Fixed Costs

Inward Outward

Data Model Data Model

Panel A: Foreign Trade Shares

Mean 0.011 0.011 0.010 0.011
SD 0.023 0.019 0.023 0.021
Corr 0.833 0.823
R2 0.693 0.677

Panel B: Foreign MP Shares

Mean 0.009 0.009 0.006 0.006
SD 0.026 0.027 0.015 0.015
Corr 0.721 0.727
R2 0.520 0.528

Panel C: Foreign Affiliate Shares

Mean 0.000 0.031 0.000 0.031
SD 0.001 0.084 0.001 0.025
Corr 0.284 0.094
R2 0.081 0.009

Notes: The figure shows various moments not targeted in the calibration in both calibrated model and data for
the calibration of the model without fixed costs. To compute all moments, we drop the diagonals of all bilateral
matrices. While we target the coefficients on gravity variables Table 1, we do not directly target the full matrix
of foreign trade, MP, or affiliate shares. The inward shares are such that they sum to 1 if added by destination,
across origin. For example, inwards trade shares break down each destination market’s imports by import origin.
Outwards shares sum to 1 if added by origin, across destination. For example, outwards trade shares break down
each production country’s exports by export destination.
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Figure OA.12: Trade Shares and Inward MP Shares in Data and Model for the Calibration
Without Fixed Costs

Notes: The figures shows graphs statistics from the data obtained from Alviarez (2019) against the same objects
from the calibration of the model without fixed costs. The left panel shows trade shares, the second panel shows
inward MP shares, and the third panel shows inward affiliate shares.

Figure OA.13: Trade Costs and MP Costs for the Calibration Without Fixed Costs

Notes: The figure shows a histogram of the calibrated MP costs and trade costs in the model without fixed costs.
We omit the own-costs which are normalized to 1 for all three types of costs. For MP costs, we also omit country
pairs where MP is zero, since we set the MP costs to infinity in those cases.
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Figure OA.14: Technology Parameters for the Calibration Without Fixed Costs

Notes: The estimated country-specific fundamentals of the calibrated model without fixed costs. The left panel

plots the Pareto minimum z
x

s�1
i of the firm productivity distribution against the scale T` of Fréchet distribution of

location-input-specific productivity shocks.

Figure OA.15: Real Wages Changes Across Countries in the Brexit Simulationfor the Calibration
Without Fixed Costs

Notes: The figures shows the change in real wage in our Brexit simulation for the calibrated model without fixed
costs. The effect on EU member countries is shown in green, the effect on non-EU countries is shown in yellow, and
the effect on Great Britain is shown in purple. In the first panel, only trade costs increase by 10% and the second
panel adds a 10% increase of the MP costs.
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Figure OA.16: Net (Percentage) Changes in Affiliate Counts by Sender and Host Country in the
Brexit Simulation for the Calibration Without Fixed Costs

Notes: The left panel in each row of the figure shows the absolute and percentage change (top and bottom) in the
number of affiliates operated by firms headquartered in the EU in non-EU countries, EU countries, and in Great
Britain in the Brexit simulation in the calibrated model without fixed costs. The right panel in each row of the
figure also shows the change in the number of affiliates operated by firms headquartered in Great Britain in non-EU
countries, EU countries, and in Great Britain. The blue bar reflects a 10% trade costs increase, the yellow bar adds a
10% increase of the MP costs.

OA - 53



Figure OA.17: Net (Percentage) Changes in Affiliate Counts by Sender and Host Country in the
Sanctions on Russia Simulation for the Calibration Without Fixed Costs

Notes: The left panel in each row of the figure shows the absolute and percentage changes (top and bottom) in
the number of affiliates operated by firms headquartered in countries that placed sanctions to Russia in Russia
itself, within the territory of the sanctioning countries, and in third party countries, for the calibration of our model
without fixed costs. The right panel in each row of the figure shows the change in the number of affiliates operated
by firms headquartered in Russia in Russia itself, within the territory of the sanctioning countries, and in third
party countries. The blue bar refers to a counterfactual with a 30% increase in the MP cost while the yellow bar
reflects the effect of setting the MP cost to infinity.
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Figure OA.18: Real Wages Changes Across Countries in the Sanctions on Russia Simulation for
the Calibration Without Fixed Costs

Notes: The figures shows the change in real wage in our Sanctions on Russia simulation for the calibrated model
without fixed costs. The effect on EU member countries is shown in green, the effect on non-EU countries is shown
in yellow, and the effect on Great Britain is shown in purple. In the first panel, only trade costs increase by 10% and
the second panel adds a 10% increase of the MP costs.
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