
APPENDIX

A. THEORY

The theory appendix contains additional proofs and derivations omitted in the body of

the paper.

A.1 The PIGL Demand Function

Consider the indirect utility function given in equation (1). Roy’s Identity implies that

sectoral expenditure shares are given by the following formula:

(A.1) ϑs ≡ ϑs (y, PrA, PrM) = −
∂V(y,PrA,PrM)

∂ps
Prs

∂V(y,PrA,PrM)
∂y y

.

We compute the numerator and denominator separately and then combine them. The

numerator can be written:

∂V (y, PrA, PrM)

∂PrA
PrA =

∂

∂PrA

[
1
η

(
y

Pφ
rAP1−φ

rM

)η

− ν ln
(

PrA

PrM

)]
PrA = −φ

(
y

Pφ
rAP1−φ

rM

)η

− ν,

while the denominator has the following expression:

∂V (y, PrA, PrM)

∂y
y =

(
y

Pφ
rAP1−φ

rM

)η

.

Combining the two previous derivatives using the expression in equation A.1 yields the

following expressions of the sectoral expenditure shares:

(A.2) ϑA = φ + ν

(
y

Pφ
rAP1−φ

rM

)−η

ϑM = (1− φ)− ν

(
e

Pφ
rAP1−φ

rM

)−η

.

The Allen-Uzawa elasticity of substitution is given by

$ =

∂2e(PrA,PrM,V)
∂PrA∂PrM

e (PrA, PrM, V)

∂e(PrA,PrM,V)
∂PrA

∂e(PrA,PrM,V)
∂PrM

,
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where e (PrA, PrM, V) is the expenditure function given by

(A.3) e (PrA, PrM, V) = (V + ν ln (PrA/PrM))1/η η1/ηPφ
rAP1−φ

rM .

Using equation (A.3), one can show that

$ = 1− η
(ϑA − φ) (ϑM − (1− φ))

ϑAϑM
= 1 + η

(ϑA − φ)2

ϑA (1− ϑA)
.

A.2 Labor Supply

We denote total payments per efficiency unit of labor in region r and sector s by wrs. In

non-agriculture, these payments reflect only the wage per efficiency unit. In agriculture,

they also include the payments to land which are redistributed to workers, so:

wrA ≡ w̃rA +
α

1− α
w̃rA =

1
1− α

w̃rA,

where w̃rA denotes the wage per efficiency unit in agriculture in region r.

Individual workers learn the amount of efficiency units of labor they can supply to ei-

ther sector once they arrive in a location. We denote the efficiency units individual i can

supply to each sector by zi
A and zi

M. Individuals draw their efficiency units from a sector-

specific Fréchet distribution, P
(
zi

s ≤ z
)
= Fs (z) = e−hsz−ζ

, where the term hs determines

the efficiency units of the average worker and ζ the dispersion of efficiency units across

workers in sector s. Since hs is not separately identified from sector s productivity, i.e.,

Zrs, we set hs = 1 ∀s without loss of generality.

Worker i then chooses their sector so as to maximize their labor income, yi
r = maxs

{
wrszi

s
}

.

A standard set of arguments implies the following analytical expressions for the key ob-

jects of our theory.

1. Sectoral employment shares are

(A.4) srs = hs

(
wrs

wr

)ζ

where wr =

(
∑

s
wζ

rs

)1/ζ

.
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2. The aggregate amounts of sectoral human capital are

Hrs = Γζ Lr

(
wrs

wr

)ζ−1

= Γζ Lrs
ζ−1

ζ
rs ,

where Γx ≡ Γ (1− 1/x) and Γ denotes the Gamma function.

3. Total sectoral earnings are

wrsHrs = wrsΓζ Lr

(
wrs

wr

)ζ−1

= wrΓζ Lr

(
wrs

wr

)ζ

= wrΓζ Lrsrs.

4. The distribution of realized labor income, yi
r, inherits the Fréchet distribution of the

underlying efficiency units of labor and is given by

(A.5) Fr(y) ≡ P
(

yi
r ≤ y

)
= e−

(
∑s wζ

rs

)
y−ζ

= e−(y/wr)
−ζ

.

Hence, a worker’s expected income in region r prior to moving there is given by

E
[
yi

r
]
= Γζwr. Due to the law of large numbers this also corresponds to the ex-post

average income in location r, so that, Yr = wrΓζ Lr.

A.3 PIGL Aggregation

In this section we derive the aggregate demand system and the expression for special

welfare introduced in Section 2.2.

Aggregate Demand

Let Fr (y) be the distribution of income derived in equation (A.5). Integrating over the

sectoral expenditure shares of individual workers in region r in equation A.2 yields an

expression for a region’s aggregate expenditure share.

ϑrs ≡ ϑrs (w̄r, PrA, PrM) =

∫
ϑA (y, PrA, PrM) ydFr (y)∫

ydFr (y)
= φ+ ν

(
1

Pφ
rAP1−φ

rM

)−η ∫
y1−ηdFr (y)∫

ydFr (y)
.
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Given that Fr (y) = e−(y/wr)
−ζ

, we have that

P
(

y1−η < m
)
= P

(
y < m

1
1−η

)
= e
−

m
1

1−η

wr

−ζ

= e
−
(

m

w1−η
r

)− ζ
1−η

.

Hence, ∫
y1−ηdFr (y)∫

ydFr (y)
=

Γ ζ
1−η

w1−η
r

Γζwr
=

Γ ζ
1−η

Γζ
w−η

r ,

so that

ϑrA = φ + ν
Γ ζ

1−η

Γζ

(
wr

pφ
rA p1−φ

rM

)−η

= φ + νRC

(
wr

pφ
rA p1−φ

rM

)−η

,(A.6)

where we defined the composite parameter νRC ≡ ν
Γ ζ

1−η

Γζ
.

Indirect Utility

Using the indirect utility function in equation (1), we derive the following expression for

the, expected utility in region r:

E [V (y, PrA, PrM)] =
1
η

(
1

Pφ
rAP1−φ

rM

)η ∫
yηdFr (y)− ν ln

(
PrA

PrM

)
.

Workers effectively draw their income from the Fréchet distribution in equation (A.5)

upon arriving in their region of choice. We use the properties of the Fréchet distribution

to show that yη itself is drawn from a Fréchet distribution with a shape parameter ζ/η

and scale wη
r :

P (yη < m) = P
(

y < m
1
η

)
= e
−
(

m
1
η

wr

)−ζ

= e
−
(

m
wη

r

)− ζ
η

.

By implication,
∫

yηdFr (y) = Γ
(

1− 1
ζ/η

)
wη

r = Γ ζ
η
wη

r ,so that

(A.7) E [V (y, PrA, PrM)] =
1
η

Γ ζ
η

(
wrt

Pφ
rAP1−φ

rM

)η

− ν ln
(

PrA

PrM

)
.

This is the expression in equation (13).
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A.4 Characterization of Equilibrium

The equilibrium is characterized by the following system of equations:

1. Spatial labor supply: The spatial labor supply function is given in the law of motion

for the local population in equation (A.8) given by

(A.8) Ljt = ∑
r

mrjtLY
rt = ∑

r
mrjtnrt−1Lrt−1,

where mrjt is given in equation (10). Together with the expression for expected util-

ity Vrt given in (13), equation A.8 determines the spatial supply function as a func-

tion of local wages wrt and local prices {PrAt, PrMt}r.

2. Labor market clearing in agriculture: the agricultural labor market clears when

labor demand (LHS) equals labor supply (RHS)

(A.9) w−
1
α

rAtZ
1
α
rAtTr = Γζ Lrt

(
wrAt

wrt

)ζ−1

.

Equation A.9 determines the scaled skill prices in the agricultural sector, wrA =
1

1−α w̃rA, as

(A.10) wζ−1+ 1
α

rAt = wζ−1
rt Z

1
α
rAt

Tr

Γζ Lrt

Market clearing for non-agricultural products: For non-agricultural products, sales

of firm ω located in region r are given by

prt (ω) yrt (ω) = ∑
j

(
τrjM prrt (ω)

PjMt

)1−σ

ϑjMtΓζ Ljtwjt.

The mass of non-agricultural firms that enter a location, Nrt, is also equal to the

number of varieties produced in region r. Aggregating over the measure of varieties,

Nrt yields:

σ

σ− 1
wrMtHrPt = Nrt

(
σ

σ− 1

)1−σ

w1−σ
rMt Zσ−1

rt ∑
j

(
τrjM

PjMt

)1−σ

ϑjMtΓζ Ljtwjt,

where we used that total payments to production workers are a constant fraction,
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σ−1
σ , of total sales. We denote by HrPt and HrEt the total mass of non-agricultural

workers engaged in production and entry, respectively, so that HrPt + HrEt = HrMt.

The mass of local varieties, Nrt, itself is determined from free entry as Nrt =
1
fE

HrEt =
1

σ fF
HrMt and HrPt =

σ−1
σ HrMt. Hence,

wrMt =
1

σ fF

(
σ

σ− 1

)1−σ

w1−σ
rMt Zσ−1

rMt ∑
j

(
τrjM

PjMt

)1−σ

ϑjMtΓζ Ljtwjt,

which implies that

(A.11) wσ
rMt =

1
σ fF

(
σ

σ− 1

)1−σ

Zσ−1
rMtDrt,

where Drt = ∑j τ1−σ
rjM Pσ−1

jMt
(
1− ϑjAt

)
Γζ Ljtwjt was defined in equation (14) and the

non-agricultural spending share ϑrMt is given in equation A.6.

These equations fully determine the equilibrium. In particular, upon substituting for ϑrMt

and Vrt , equations (A.8), (A.9), and (A.11) are 3× R equations in the 3× R unknowns

{wrAt, wrMt, Lrt}.

A.5 Additional Proofs and Derivations

A.5.1 Proof of Proposition 1

First, rewrite equation (A.11) as follows

(A.12) wrMt =

(
1
fE

) 1
σ
(

1
σ

)
(σ− 1)

σ−1
σ Z

σ−1
σ

rMtD
1
σ
rt ≡ ZrMt,

which is the first result in Proposition (15). Furthermore, upon defining ZrAt ≡ ZrAt
(
Γζ`rt

)−α

where `rt ≡ Lrt
Tr

is population density, equation (A.10) reads

wζ−1+ 1
α

rAt = wζ−1
rt Z

1
α

rAt =
(

wζ
rAt + wζ

rMt

) ζ−1
ζ

Z
1
α

rAt =
(

wζ
rAt +Z ζ

rMt

) ζ−1
ζ

Z
1
α

rAt.
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Rearranging terms yields

1 =

(
1 +

(
ZrMt

wrAt

)ζ
) ζ−1

ζ (ZrAt

wrAt

) 1
α

,

which is the second result in Proposition 1. To derive the last result in Proposition 1,

note that sectoral employment shares satisfy srAt/ (1− srAt) = (wrAt/wrMt)
ζ . As a result,

equation (A.10) can be written as wrAt = s
− ζ−1

ζ α

rAt ZrAt, so that

srAt

1− srAt
=

 s
− ζ−1

ζ α

rAt ZrAt

ZrMt


ζ

=

(
ZrAt

ZrMt

)ζ

s−(ζ−1)α
rAt .

Rearranging terms yields s1+(ζ−1)α
rAt
1−srAt

=
(

ZrAt
ZrMt

)ζ
.

A.5.2 Proof of Proposition 2

The wage exposure elasticity φ (srA) The first result in Proposition Proposition 1, di-

rectly implies the following:

(A.13) d ln wrMt = d ln ZrMt.

Taking the total derivative of the expression for the agricultural wage in Proposition

1yields:

(A.14) d ln wrAt =
(1− srAt) γ

1 + (1− srAt) γ
d ln ZrMt +

1
1 + (1− srAt) γ

d ln ZrAt.

Finally, we can take the total derivative for the expression for the average income in a

location in equation (A.4), and combine it with equations (A.13) and (A.14) to obtain:

d ln wrt = srAtd ln wrAt + (1− srAt) d ln wrMt

=
srAt (1− srAt) γ

1 + (1− srAt) γ
d ln ZrMt +

srAt

1 + (1− srAt) γ
d ln ZrAt + (1− srAt) d ln ZrMt

=
(1 + γ) (1− srAt)

1 + (1− srAt) γ
d ln ZrMt +

srAt

1 + (1− srAt) γ
d ln ZrAt

≡ φ (srAt) d ln ZrMt + (1− φ (srAt)) d ln ZrAt,(A.15)
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where φ (srAt) =
(1+γ)(1−srAt)
1+(1−srAt)γ

.

The industrialization elasticity ψ (srA) To derive the change in srAt, we take the total

derivative of equation (A.4) and combined it with (A.15) to obtain:

d ln srAt = ζ (d ln wrAt − d ln wrt) = ζ (1− srAt) (d ln wrAt − d ln wrMt) .

Using the expressions in equations (A.14) and (A.13), this implies that

(A.16) d ln srAt =
(1− srAt) ζ

1 + (1− srAt) γ
(d ln ZrAt − d ln ZrMt) .

Finally, using that dsrAt = srAtd ln srAt,yields the expression in Proposition 2.

B. DATA AND CALIBRATION

The material presented in this section complements the quantification section of the main

paper. It contains a detailed description of the data, additional figures and tables, and

details of our estimation procedure.

B.1 Description of Data Sources and Data Construction

The spatial unit of observation used throughout the paper is the “commuting zone” de-

fined by Tolbert and Sizer [1996]. These were introduced into the economics literature by

Autor and Dorn [2013]. We choose these units since they capture integrated labor market

areas within which migration frictions are unlikely to play a role. During the period of

our study, county boundaries were subject to substantial changes. To ensure consistent

treatment, we use the crosswalk described in Eckert et al. [2020b] to map historical county

boundaries to the time-invariant commuting zone delineations of Tolbert and Sizer [1996].

Since data collection by the US Statistical Office only occurred systematically in states

that formed part of the Union, we drop data from states that joined the Union after 1870.

We chose a cutoff a decade before the start of our period of analysis since the collec-

tion of the decennial census took considerable time, so data in the 1880 Census may be

incomplete for States that joined the Union less than ten years earlier. As a result, we

exclude the following states from our sample and drop them from all our data sets (year
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of eventual accession to the Union in parentheses): Colorado (1876), North Dakota (1889),

South Dakota (1889), Montana (1889), Washington (1889), Idaho (1890), Wyoming (1890),

Utah (1896), Oklahoma (1907), New Mexico (1912), Arizona (1912), Alaska (1959), Hawaii

(1959). Figure A.1 shows agricultural employment shares in 1880 for each commuting

zone in our final sample.

B.1.1 Full Count Decennial Census, 1880-1920

Source and Description We obtained the full count decennial census micro-data files for

the years 1880, 1900, and 1920 from the IPUMS database (see Ruggles et al. [2017]). We

selected the following variables: state, county, age , school attendance (“school”), years

since immigration (“yrimmig”), state of birth (if applicable), and industry of employment

using 1950 Census codes (ind1950),. We use the county and state identifiers included in

the data to assign each observation to a commuting zone.

Sample Selection, Processing, and Use In the data, we define different groups of obser-

vations used in various parts of the paper. We define “workers“ as observations with an

industry identifier and age between 20 and 60 years. We define “agricultural workers“ as

workers who work in Agriculture, Forestry, and Fishing, corresponding to ind1950 codes

105, 116, and 126. For each commuting zone, dividing the total agricultural worker count

by the total number of workers yields the agricultural employment share we use through-

out the paper. In Figure A.1, we depict a map of the agricultural employment share in

1880.

“Immigrant workers“ are workers who immigrated within the last 20 years. “Old work-

ers“ are workers between the ages of 40 and 60. “Young workers“ are workers between

the ages of 20 and 40. We use these groups of observations to inform the location- and

decade-specific labor force growth rate nrt.

“Adolescents“ as observations with age between 6 and 18 years who do not work, are

white, and are male. We define “adolescents in school“ as adolescents who are currently

attending school. We use these two groups of workers to compute a measure of the rate

of school attendance for each commuting zone.

For each state, we also compute the number of workers born in any state. We use the

resulting “lifetime state-to-state migration matrix” to estimate the elasticity of migration

flows to distance.
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FIGURE A.1: AGRICULTURAL EMPLOYMENT SHARES ACROSS COMMUTING ZONES,
1880

0.8 − 0.9
0.8-1
0.6-0.8
0.4-0.6
0.2-0.4
Not in Sample

Notes: The map shows all commuting zones in the United States. The colors reflects the agricultural em-
ployment share bin into which individual commuting zones fall. Darker shades correspond to higher agti-
cultural employment shares. Grey commuting zones are not in our sample since their corresponding state
was not part of the Union of US states by 1870.

B.1.2 Census of Manufacturing

Source and Description We obtained county-level tabulations of the Census of Manu-

facturing data for the years 1880, 1900, and 1920 from the NHGIS database (see Manson

et al. [2017]). We selected the following variables: total manufacturing payroll, total man-

ufacturing employment, number of manufacturing establishments, and capital (real and

personal) invested in iron and steel manufacturing establishments.

Sample Selection, Processing, and Use We drop all counties for which manufactur-

ing payroll or employment is zero or missing. We then compute average manufacturing

wages in each county by dividing total manufacturing payroll by the number of manu-

facturing workers. Throughout the paper, we refer to this ratio simply as “average wage”

or “earnings ”.We compute commuting zone-level average wages by taking the payroll-

weighted average across county-level average wages within each commuting zone. In

our model average wages are the same in both sectors, so that the average manufactur-

ing wage in the data correspond to the average commuting zone wage in the model, wrt.

We compute average establishment size for each county by dividing total manufacturing

employment by the number of manufacturing establishments.
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B.1.3 Census of Agriculture

Source and Description We obtained county-level tabulations of the Census of Agri-

culture for the years 1880, 1900, and 1920 from the NHGIS database (see Manson et al.

[2017]). We selected the following variables: average land value per acre, acres of im-

proved farm land, total number of farms, and total value of farm implements and ma-

chinery.

Sample Selection, Processing, and Use We drop all counties for which average land

value per acre is zero or missing. We compute commuting zone-level average land values

per acre by taking the area-weighted average across the land values in all the counties

contained in a given commuting zone. We interpret these data in 1880 as land rents in the

model and use them to identify the supply of agricultural land in each commuting zone

in 1880, Tr. We compute average farm size for each county by dividing the total number

of improved acres in farms by the total numbers of farms.

B.1.4 Linked Census Files

Source and Description Economists have written algorithms to match workers across

sequential Decennial Census waves based on their names and a variety of other charac-

teristics. IPUMS itself provides a matched file that lists individuals that appear both in

1880 and 1900 (see Ruggles et al. [2017]). In addition, Abramitzky et al. [2022] provide

linked files for various pairs of years. We use the 1880-1900 linked file from IPUMS and

from Abramitzky et al. [2022].

Sample Selection, Processing, and Use Both samples only include men, since women’s

surnames changed frequently making it difficult to match them over time. We only keep

observations who are workers according to our definition of workers in the full count

Census files.

We use the linked data to compute the share of workers moving from commuting zone

r to commuting zone r′ between 1880 and 1900. We use the resulting “commuting-zone-

to-commuting-zone-migration matrix” to estimate the elasticity of migration flows to dis-

tance.
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B.1.5 Historical Statistics of the United States

Source and Description For aggregate time series data, we use the canonical “Historical

Statistics of the United States” (see Carter et al. [2006]). We use the series on real GDP and

the series for the price of farm goods and the prices of all commodities other than farm

goods.

Sample Selection, Processing, and Use Moments from both the GDP and the price se-

ries serve as targets in our estimation. We interpret the price series for farm goods as the

price series for agricultural prices in our model, and the series on non-farm commodities

as that of manufacturing goods. We target the growth rate of real GDP and relative prices

between 1880-1900 and 1900-1920 in our estimation.

B.1.6 Historical Bank Branches

Source and Description We obtained data on the number of private banks for each US

county for 1880 and 1910 from Jaremski and Fishback [2018].25

Sample Selection, Processing, and Use We merge these data with our Census data on

the number of workers in each commuting zone to compute the change in the log of

the number of bank branches per worker in each commuting zone. Since there are no

branches in many commuting zones in 1880, we add a 1 to each observation in the bank

branch data. Our results are robust to simply dropping observations with zero branches

in 1880 instead.

B.2 Spatial Structural Change Across Counties

Figure A.2 replicates the patterns of structural change across commuting zones in Section

1 across counties. Since we aggregated the underlying Census data from the county to the

commuting zone level, the data source for the two sets of figures is identical and the only

differences is the level of spatial aggregation. Overall, the patterns of spatial structural

change across counties are qualitatively very similar to those patterns across commuting

zones in Section 1.

25We thank Matt Jaremski for his work in compiling these data and his generosity in sharing them with
us.
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The top left panel shows the aggregate time series of the aggregate agricultural employ-

ment share, as before. The top right panel shows a gradual shift of the cross-county dis-

tribution of agricultural employment shares to the left. The bottom left panel shows that

agricultural counties in 1880 were poor counties, again mirroring the patterns we docu-

mented across commuting zones. Finally, the bottom right panel shows that wage growth

between 1880 and 1920 was faster in initially more agricultural counties, and industrial-

ization was fastest in counties in the intermediate range of agricultural specialization.

B.3 Details on Estimation Moments and Methods

B.3.1 Wage Growth, Industrialization, and Local Labor Supply

Four central parameters governing the impact of aggregate structural change are the ex-

tent of catch-up growth (λA, λM) , the sectoral labor supply elasticity ζ., and the spatial

labor supply elasticity, ε. We estimate these parameters from the empirical relationships

between initial regional specialization in agriculture in 1880 and the subsequent growth

in regional wages, changes in agricultural employment shares, and total employment

growth.. We take an indirect inference approach, that is we run the same regressions in

model-generated data and the actual data and choose parameters to match the regression

coefficients.

To implement our estimation strategy, we first document the patterns of structural change

from Section 1 in regression form. The top panel of Table A.1 reports the facts from Figure

2 in a regression form and adds an additional regression for population growth. The first

two columns show a regression of wage growth. The first column shows a regression of

wage growth from 1880-1900 and 1900-1920 on 1880 and 1900 agricultural employment

shares, respectively. The second column repeats the regression but adds state fixed effects.

The two regressions corroborate the fact shown in Figure 2 in the main text: initially more

agricultural regions saw faster wage growth than initially more industrialized regions.

Columns 3 and 4 show the regression version of the “industrialization across space” fact

in Figure 2 in the main text: industrialization exhibits a U-Shape when graphed against

initial agricultural employment shares. We capture the U-Shape by regressing changes in

agricultural employment shares between 1880-1900 and 1900-1920 on 1880 and 1900 agri-

cultural employment shares in levels and squares, respectively. The last two columns run

two similar regression for total employment growth as an outcome variable. As shown

in the text, initially more agricultural regions see slower employment growth but at the
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FIGURE A.2: SPATIAL STRUCTURAL CHANGE ACROSS COUNTIES

(A) THE DECLINE IN AGRICULTURAL

EMPLOYMENT
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(B) THE TRANSFORMATION OF LOCAL
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(C) RURAL POVERTY
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(D) RURAL CATCH-UP
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Notes: The top left panel shows the aggregate agricultural employment share in the US between 1880 and
2015. The top right panel shows the distribution of agricultural employment shares across counties in 1880,
1900, 1920, the years of our analysis. The bottom left panel shows a scatter plot between commuting zones’
agricultural employment shares and average earnings in 1880 and a Lowess fit line. The size of the points
is proportional to the total workforce in each commuting zone. The bottom right panel shows two fitted
fractional polynomial curves along with 95% confidence intervals. They show the relationship between
commuting zones’ agricultural employment share in 1880 and (1) their average earnings growth between
1880 and 1920 (left axis), (2) the change in the agricultural employment share between 1880 and 1920 (right
axis). In fitting the polynomials, we weight by commuting zones’ total employment in 1880. The figure uses
data from the US Decennial Census files for 1880, 1900, and 1920 and relies on data from the US Census of
Manufacturing for the earnings data.
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same time they experience faster wage growth.

All three patterns hold both across commuting zones, and across commuting zones within

each state. The wage and employment growth patterns are stronger when estimated

within state, whereas the U-Shape of industrialization appears very similar in regressions

with and without state fixed effects.

The second panel of Table A.1 repeats all regressions across counties instead of commut-

ing zones. We use the exact same data in both panels, with the only difference that for the

first panel we aggregate the data from the county-level (at which much of it is reported)

to the commuting zone level. The patterns of spatial structural change across counties

are quantitatively and qualitatively very similar to those across commuting zones, espe-

cially in regressions with state fixed effects. The U-Shape of industrialization is slightly

less pronounced, reflecting maybe that part of the sectoral reallocations that gives rise

to it occurred across counties within commuting zones, and are weaker within counties

themselves.

As part of our calibration, we run the regression in odd-numbered columns of the top

panel of Table A.1 in our model. While all parameters are calibrated jointly, the coeffi-

cient on the agricultural employment share in Column 1 is informative about the strength

of agricultural catch-up growth, λA. Since agricultural regions, on average, have low

agricultural productivity to start with but have the majority of their population in the

agricultural sector, the larger λA the more wage growth these regions experience.

Similarly, the strength of catch-up growth in non-agriculture, λM, informs the coefficient

on the agricultural employment share in Column 3: if agricultural regions only saw catch-

up un agricultural productivity their wages would grow, but they would not industrial-

ize, maybe even de-industrialize. If they see their non-agricultural productivity grow

faster than that of other regions, reallocating workers out of agriculture becomes prof-

itable. Lastly, the sectoral labor supply elasticity, ζ, generates the U-shape of industri-

alization in the model. Intuitively, if labor supply is very inelastic, the U-shape is less

pronounced and regional differences in sectoral reallocation are small since reallocation

is hard. We use the decline in agricultural employment shares among regions with initial

agricultural employment shares of above 80% as an additional moment for ζ.

Lastly, the spatial labor supply elasticity, ε, determines the relationship between wage

growth and employment growth in the model. If supply is inelastic, large wage growth

differences across regions lead to small differences in population growth. Since agricul-

tural regions, on average, see faster wage growth, but slower employment growth, we
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TABLE A.1: WAGE GROWTH, INDUSTRIALIZATION, AND EMPLOYMENT GROWTH
ACROSS REGIONS: 1880-1900 AND 1900-1920

PANEL A: COMMUTING ZONES

∆ log w̄rt ∆srAt ∆ log Lrt

srAt 0.251∗∗∗ 0.357∗∗∗ -0.484∗∗∗ -0.466∗∗∗ -0.360∗∗∗ -0.753∗∗∗

(0.0220) (0.0381) (0.0279) (0.0342) (0.0309) (0.0509)
s2

rAt 0.451∗∗∗ 0.427∗∗∗

(0.0317) (0.0386)

Observations 990 990 990 990 990 990
Adjusted R2 0.839 0.855 0.309 0.362 0.167 0.315
Year FEs Yes Yes Yes Yes Yes Yes
State FEs Yes Yes Yes

PANEL B: COUNTIES

∆ log w̄rt ∆srAt ∆ log Lrt

srAt 0.316∗∗∗ 0.334∗∗∗ -0.371∗∗∗ -0.379∗∗∗ -0.510∗∗∗ -0.765∗∗∗

(0.0132) (0.0187) (0.0145) (0.0159) (0.0164) (0.0221)
s2

rAt 0.344∗∗∗ 0.344∗∗∗

(0.0167) (0.0187)

Observations 3918 3918 3918 3918 3918 3918
Adjusted R2 0.704 0.720 0.194 0.237 0.221 0.328
Year FEs Yes Yes Yes Yes Yes Yes
State FEs Yes Yes Yes
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Notes: The outcome variables are average annual wage growth (Columns 1 and 2), change in agricultural
employment shares (Columns 3 and 4), and growth in total employment for US commuting zones between
1880-1900 and 1900-1920. The regressor in all regressions is the agricultural employment share in 1880 and
1900, respectively, in all regressions. In Columns 3 and 4, the additional regressor is the squared agricultural
employment share in 1880 and 1900, respectively.All regression are weighted by initial total employment of
the commuting zone. and include decade fixed effects. Even-numbered Columns also include a state fixed
effect.Data on wages from the Census of Manufacturing, all other data from the full-count US Decennial
Census files. Robust standard errors in parentheses. ∗ , ∗∗, and ∗∗∗ denote statistical significance at the 10%,
5% and 1% level respectively.
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estimate labor supply to be relatively inelastic to local wage growth. As an additional

moment informing the labor supply elasticity, we target estimates of the labor supply

elasticity from the literature of 2 (see, e.g., Monte et al. [2018]).

B.3.2 Exogenous Growth in the Local Labor Force: The Bias of Immigration and Fer-

tility Across Space

Our model accounts for growth in the local labor force through interregional migration.

Empirically, other factors affecting the size of the local labor force are births, immigration,

and deaths, all of which likely differ across commuting zones.These aspects of labor force

entry and exit also generate aggregate population growth. In this section, we show which

determinants of local labor force growth vary substantially across commuting zones and

how we account for them in our analysis.

Figure A.3 shows proxies for the three most important sources of local population growth:

births, immigration, and deaths. The rightmost panel shows the number of children per

adult (“birth rates”). We measure local “birth rates” as the fraction of children between

0 and 20 relative to the number of working adults aged 20-60. Rural locations have sub-

stantially higher birth rates and hence experience faster innate population growth.

The middle panel shows the the correlation of the share of immigrants in the local work-

force and initial agricultural employment shares. We measure immigrants as the share of

workers that immigrated in the last 20 years from a foreign country. Immigrants predom-

inantly settled in urban locations, and thus raised the population of such non-agricultural

locations.

The rightmost panel of Figure A.3 provides evidence that - compared to births and im-

migration - labor force exit rates do not vary systematically across space. If death and

retirement rates varied substantially across regions, the fraction of young workers (20-40

years old) in the total workforce should vary a lot, too. However, the figure shows that the

fraction of young workers is essentially uncorrelated with the local agricultural employ-

ment share. We thus assume that the rate of labor force exit is constant across locations.

We now show how we use these data to estimate the exogenous component of local pop-

ulation growth nrt in each region. To do so, recall that we denote by LY
rt the number of

workers in a location at the beginning of period t, i.e., before making their moving de-

cisions. Lrt is the number of workers working in region r during period t, i.e., the mass

of workers that chose to move (or remain in) location r during period t. The local rate of
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FIGURE A.3: IMMIGRATION, FERTILIY, AND AGE STRUCTURE ACROSS COMMUTING
ZONES
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Notes: The left panel shows a proxy for the local birth rate, i.e., the share of children between 0 and 20
relative to the number of working adults aged 20-60, as a function of the initial agricultural employment
share. The middle panel shows the share of immigrants in the local work force as function of the initial
agricultural employment share. The right panel shows the fraction of young workers among the total
workforce in each commuting zone. Total workers are defined as all individuals aged 20-60 that have an
industry identifier. Young workers are defined as all individuals aged 20-40 that have an industry identifier.
The underlying data source for all three panels are the US Decennial Census files for 1880 and 1900. The
size of the symbols is proportional to a regions total employment. The graph shows the fit line of a local
polynomial regression.

exogenous labor force growth, nrt, is thus defined by LY
rt+1 = nrtLrt. To calibrate nrt, note

that the following accounting identity describes the law of motion of the total labor force

in region r at the beginning of period t:

LY
rt = Lrt−1 − Exitrt−1,t + Entryrt−1,t = Lrt−1

(
1− Exitrt−1,t

Lrt−1
+

Entryrt−1,t

Lrt−1

)
,

where Exitrt−1,t is the number of workers exiting the labor force between periods t − 1

and t but do not leave the location to work elsewhere. Similarly, Entryrt−1,t is the number

of workers entering the labor force between periods t − 1 and t that did not immigrate

from another domestic region between t− 1 and t.

Given our assumption of a constant labor force exit rate across regions, we set the exit

rate equal to a common constant, δ, so that:

Exitrt−1,t

Lrt−1
= δ.

The gross rate of local labor force growth prior to workers making their migration deci-
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sions is thus given by

nrt−1 =
LY

rt
Lrt−1

= 1− δ +
Entryrt−1,t

Lrt−1
.

Let Crt denote the number of children in r at time t − 1 and Irt denote the number of

working immigrants in region r that arrived between t− 1 and t. Let ι be the fraction of

children that join the labor force. Since we assume differences in entry rates to be due

to differences in fertility rates and immigration only, we relate Crt and Irt to Entryrt−1,t

according to
Entryrt−1,t

Lrt−1
= x× ιCrt + Irt

Lrt−1
,

where x is a scalar that reflects measurement error, e.g., some children die, time is not

discrete (i.e., the 16 year old children enter the labor market earlier than the 5 yr old

children), or immigrants might move across locations within the US in-between Census

years. Then

nrt−1 = 1− δ + x× ιCrt + Irt

Lrt−1
,

where Crt, Irt and Lrt−1 are observed in the data.

We choose the scalar x to ensure that this accounting equation satisfies the aggregate rate

of employment growth in the Census, that is we ensure that the following equation holds

in the data:

Total employment at t = ∑
r

(
1− δ + x

ιCrt + Irt

Lrt−1

)
Lrt−1.

Rearranging terms implies that

x =
Total employment in t− (1− δ)Total employment in t-1

∑r (ιCrt + Irt)
.

Hence, for a given exit rate δ and labor force participation rate ι we pick the scale x for

the aggregate birth and immigration inflow to account for all employment growth. And

then we use this x to calculate - in the model - the number of workers in region r prior to

their migration choices as

LY
rt = nrt−1Lrt−1 = Lrt−1 (1− δ) + x (ιCrt + Irt) .
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Hence, local labor force growth prior to worker’s migration choices depends on the ob-

servable (ιCrt + Irt) and it has the correct slope for our model to be consistent with aggre-

gate population growth.

To pick the exit rate δ, note that the fraction of old workers at time t is given by

Share of old workerst =
(1− δ)∑r Lrt−1

∑r LY
rt

= (1− δ)
∑r Lrt−1

∑r Lrt
.(A.17)

Because ∑r Lrt−1
∑r Lrt

is simply the ratio of the total labor force at t− 1 divided by the total labor

force at t, which are both observed, we can calculate δ for any target of the share of old

workers. A generation in our model corresponds to 20 years in the data. In calibrating

δ, we think of 0-20 year olds as not working, of 20-40 year olds as “young” workers, and

of “40-60” year olds as “old workers.” The share of old workers in our data is 0.34, 0.35

and 0.37 in 1880, 1900, and 1920, respectively. Because, empirically, some people above

60 are still in the workforce, we take a number of 0.45. Together with a rate of population

growth of about 35% observed in the data (at the 20 year horizon), equation (A.17) implies

that δ is given by 0.4.

To calibrate ι, we combine the mortality rate of children with the rate of labor force par-

ticipation among 20-40 year olds in 1900. which is about 0.5 in our data, which comprises

both men and women. As a result, we set ι = 0.5.

In Figure A.4, we show the calibrated exogenous rate of population growth, nrt, for the

two time periods 1880-1900 and 1900-1920. The figure shows that, on net, exogenous

population growth was slightly higher in agricultural regions. The relationship between

agricultural specialization and subsequent exogenous population growth weakens some-

what over these periods suggesting population growth became somewhat more balanced

as fertility rates in more rural regions started to decline.

B.3.3 Migration Gravity Equations: Estimating the Distance Elasticity of Moving Costs

In this section, we describe our estimation of the distance elasticity of migration costs,

κ. In the model, the mass of workers migrating from region r to region r′ between two

periods is given by:

Mrr′t = mrr′tLY
rt =

(µrr′Vr′tBr′t)
ε

∑j
(
µrjVjtBjt

)ε Lrt−1nrt−1.
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FIGURE A.4: EXOGENOUS POPULATION GROWTH
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Notes: This figures shows the calibrated rate of exogenous population growth across commuting zones
between 1880-1900 and 1900-1920. In each year there is one region with a rate above 3 which we drop to
shows the variation among the remaining observations in more detail.

We project the moving cost between two regions on the physical distance between them,

i.e., we set µrr′ = d−κ
rr′ ., where the parameter κ parameterizes the distance cost of migra-

tion. The larger κ, the more the destination utility of areas furhter away is discounted.

In our empirical estimation, we set drr′ ∀r = r′ to the average distance between county

centroids within a commuting zone, and drr′ ∀r 6= r′ to the distance between commuting

zone centroids.

Taking logs on both sides and grouping terms then yields:

(A.18) log Mrr′t = αr′t + βrt − κε log drr′

where

αr′t = ε log(Vr′tBr′t) and βrt = log(Lrt−1nrt−1)− log(∑
r′′

(
d−κ

rr′′Vr′′tBr′′t
)ε
).

Since we calibrate the model at the commuting zone level, the indices r and r′ refer to

commuting zones. Equation A.18 suggests a fixed effect regression of commuting zone

migration flows to recover to recover the elasticity of migration flows to distance, κε,

relevant in our model.

The Decennial Census files do not contain information on workers’ migration history at

the commuting zone or county level. Hence, it is impossible to directly construct cross-

commuting zone migration flows. We therefore rely on information from the linked Cen-
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TABLE A.2: MIGRATION GRAVITY EQUATIONS

LN BILATERAL MIGRATION PROBABILITY

1880-1900 1880(20)1920

Log Distance -2.922∗∗∗ -2.632∗∗∗ -3.925∗∗∗ -2.262∗∗∗ -2.291∗∗∗

(0.0327) (0.0111) (0.0572) (0.0306) (0.0311)

Observations 254762 349230 3983 3983 3935
(Pseudo) R2 0.8135 0.8989 0.9296 0.806 0.799

Year FE
Origin+Dest. FE

Estimator PPML OLS

Spatial Unit CZ CZ State State State
Linking Method IPUMS ABE NA NA NA

Notes: (1) PPML with census data from IPUMS linked by IPUMS. (2) PPML with census data from IPUMS
linked by Abramitzky Boustan Eriksson. (3) PPML in state flow data from IPUMS, pooled across all years.
(4) OLS regression in state flow data from IPUMS adding a 1 to all flows, pooled across all years. (5) OLS
regression in state flow data from IPUMS dropping zero flow observations, pooled across all years.

sus files described in our data section above. Since linking rates are relatively low, the

majority of bilateral commuting zone pairs exhibit no migration flows between 1880 and

1900. We hence estimate equation (A.18) using Poisson Pseudo Maximum Likelihood

(PPML), as proposed by Silva and Tenreyro [2006]. More specifically, we estimate the

following equation using PPML:

(A.19) Mrr′t = exp (αr′t + βrt − κε log drr′) + εrr′t.

Columns (1) and (2) in Table A.2 report the estimates based on two different linked-

Census files by Ruggles et al. [2015] (“IPUMS”) and Abramitzky et al. [2021] (“ABE”).

These files differ slightly in their technique to link individuals across census years. Re-

assuringly, both produce similar estimates: we estimate an elasticity of migration flows

with respect to geographic distance (κε) of around 2.75.

Linking data across census years requires a set of assumptions and large amounts of data

processing. For robustness, we therefore repeat the estimation on a different data set

that we can directly compute from the cross-sectional Census data but that only contains

state-to-state flows. In particular, as discussed in the data section above, we use the in-

formation on the state of birth of each worker contained in the Decennial Census files to
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construct a matrix of lifetime state-to-state migration flows for all workers between 20

and 40. Column 3 of Table A.2 presents the PPML estimates of the distance elasticity in

the state-to-state data. The estimate is larger than in the commuting zone data highlight-

ing that there are, by construction, less flows across states than across commuting zones

making distance appear as a larger impediment of migration.

The state-by-state migration matrix has very few pairs of states with zero flows. Across

the two cross-sections of data for 1880-1900 and 1900-1920, about 50 pairs exhibit zero

flows.As a result, we can also estimate the gravity regression using simple OLS. instead

of PPML. Columns 4 and 5 in Table A.2 report estimates from a regression where we

simply replace zeros with 1s and another where we omit all zero-valued pairs of states.

Since states further apart are more likely to report zero flows because they are further

apart, dropping them leads to a smaller estimate of the elasticity at 2.62, the lowest of all

our estimates.

Note that our theory only produces an approximate gravity equation for the flows be-

tween groups of commuting zones (such as states) because of Jensen’s inequality. As

a result, the distance elasticities stemming from state-level data do not map directly to

the structural parameters κε. Nevertheless, we find it re-assuring that the state-level re-

gressions estimates are not too dissimilar from the regression estimates using commuting

zone. Furthermore, since a fraction of moves in the model happen across commuting

zones within the same state, we would expect the state-to-state distance coefficient to be

larger than the commuting zone to commuting zone one in model-generated data, too.

B.3.4 Computing Macroeconomic Aggregates

Aggregate GDP Growth

We measure the growth rate of aggregate GDP using the Fisher chained index. The Fisher

Index is defined by

gF
t =

√
Pct−1Ct

pct−1Ct−1
× PctCt

PctCt−1
,

where Pct is the price of the consumption good at time t and Ct is the quantity.

In the context of our model with R regions and two sectors s, we construct the following
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auxiliary indices:

St−1 (Pt−1) =
R

∑
r=1

S

∑
s=1

Prst−1Crst−1 and St−1 (Pt) =
R

∑
r=1

S

∑
s=1

PrstCrst−1.

and

St (Pt−1) =
R

∑
r=1

S

∑
s=1

Prst−1Crst and St (Pt) =
R

∑
r=1

S

∑
s=1

PrstCrst.

where Prst(Crst) denotes the prices (consumption quantities) of sector s goods in region r

at time t.

We then combine these expressions into the corresponding Fisher Index as follows:

gF
t =

√
St (Pt−1)

St−1 (Pt−1)
× St (Pt)

St−1 (Pt)
.

In our model, Crst can be computed as

CrAt =
ϑrAt

∫
ydFr (y)

PrAt
=

ϑrAtΓζwrtLrt

PrAt

CrMt =
(1− ϑrAt)

∫
ydFr (y)

PrMt
=

(1− ϑrAt) ΓζwrtLrt

PrMt
.

Relative Prices

To compute the time-series of the relative price of non-agricultural to agricultural goods,

we compute chained sectoral price indices and then take their ratio. More specifically,

consider sector s and time-period between t− 1 and t. Let PL
st and PP

st denote the Laspeyres

and Paasche indices, respectively. These are given by

PL
st =

∑r PrstCrst−1

∑r Prst−1Crst−1
PP

st =
∑r PrstCrst

∑r Prst−1Crst
.

The Fisher Index for sector s is then given by PF
st =

√
PL

st × PP
st.. The time-series of the

relative price is then given by PM−A
t = PF

Mt/PF
At.
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TABLE A.3: DETERMINANTS OF AGRICULTURAL SPECIALIZATION

BIVARIATE CORRELATION OF srA1880 WITH ...

ln Ar1880 ln Zr1880 ln Ar1880/Zr1880 ln `r1880 ln Br1880

-0.231∗∗∗ -0.257∗∗∗ 0.0368 -0.133∗∗∗ -0.115∗∗∗

(0.0110) (0.0114) (0.0292) (0.00630) (0.0304)

Observations 495 495 495 495 495
Adjusted R2 0.430 0.515 0.003 0.493 0.045

Notes: The table reports the results of a set of bivariate regression srA1880 = α + βxr + ur, where xr =
ln Ar1880 (Column 1), xr = ln Zr1880 (Column 2), xr = ln (Ar1880/Zr1880) (Column 3), xr = ln `r1880 (Column
4) and xr = ln Br1880 (Column 5). Robust standard errors in parentheses. ∗ , ∗∗, and ∗∗∗ denote statistical
significance at the 10%, 5% and 1% level respectively.

B.3.5 Agricultural Employment and Regional Fundamentals

In Table A.3, we summarize the variation of the regional fundamentals by reporting

their correlation with the agricultural employment share in 1880. Specifically, we run

a set of bivariate regressions between srA1880 and the (log of the) calibrated productivities

ln Ar1880 and ln ZrM1880 (columns 1 and 2), a region’s technological comparative advan-

tage ln (ZrA1880/ZrM1880) (column 3), a region’s population density ln `r1880 (column 4),

and regional amenities ln Br1880 (column 5). Table A.3 reports the regression coefficients

on the regional agricultural employment share.

Most importantly, as shown in Columns 1 and 2, we find that agricultural regions in 1880

have both low agricultural productivity and low manufacturing productivity. Agricul-

tural specialization is thus only a reflection of comparative advantage in agriculture, not

absolute advantage. This is seen in Column 3, which shows a positive, albeit statisti-

cally insignificant, correlation between agricultural employment shares and the relative

productivity of the agricultural sector. Column 4 shows that rural labor markets are land-

abundant, that is their population density `rt is low. This pattern is implied by the fact

that, empirically, agricultural land rents in rural regions are relatively low compared to

more urban locations. Finally, amenities are lower in rural regions, indicating that such

regions are sparsely populated even given their low wages (Column 5).

B.3.6 Implied Substitution Elasticities between Sectoral Consumption

The model-implied elasticity of substitution between value added in the two sector sis

given in equation (3). Because the agricultural expenditure share ϑA varies across indi-
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FIGURE A.5: THE ELASTICITY OF SUBSTITUTON
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Notes: The figure shows the elasticity of substitution $rt = 1 + η
(ϑrAt−φ)2

ϑrAt(1−ϑrAt)
as a function of the agricultural

employment share. For ease of readibility we do not display localities with an elasticity exceeding 5. This
restrictions is only binding for some regions in 1880. The size of the scatter symbols is proportional to a
location’s total employment.

viduals (and hence space and time), $ varies with the level of development. To visualize

the variability in $, we define the following “average” substitution elasticity in region r at

time t,

$rt = 1 + η
(ϑrAt − φ)2

ϑrAt (1− ϑrAt)
,

where ϑrAt is the aggregate agricultural employment share defined in equation (12) above.

In Figure A.5, we plot $r as a function of the local agricultural employment share in 1880,

1900, and 1920. In the cross-section, substitution elasticities are generally higher in rural

labor markets, reflecting the positive relationship between agricultural spending shares

and agricultural employment. Across time, the elasticity of substitution declines, because

economic growth reduces the agricultural spending share.

B.3.7 Micro Estimates of the Engel Elasticity η

Targeting the time series of the agricultural employment share implied an estimate of

η = 0.93. However, our model also implies a log-linear relationship between individuals’

expenditure share on agricultural products and their total expenditure that can be used
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to estimate η from cross-sectional microdata:

(A.20) ln ϑA (y, Pr,M) = ln
(
−νP−1

r,M

)
− η ln y,

where we used our estimate φ ≈ 0. We use the 1936 Consumer Expenditure Survey

(CEX) by the U.S. Bureau of Labor Statistics obtained from the Inter-university Consor-

tium for Political and Social Research (ICPSR) to provide direct evidence on the log-linear

relationship between expenditure shares and total expenditure.26

The CEX contains micro data on expenditure of individuals on a large variety of cate-

gories and a swath of individual characteristics. We use the household files. We obtain

information on households’ total expenditure, expenditure on food, urban/rural status,

size, interview data, occupation and industry of household head, race of household head,

and county of residence.

In Figure A.6, we show that this log-linear relationship is a good description of the data.

In the left panel, we display the cross-sectional distribution of food shares. Empirically

this variation is substantial, ranging from 5% to 80%. In the right panel, we show the em-

pirical relationship between log expenditure and log food shares as a binned scatter plot.

As implied by our theory, the elasticity between food shares and expenditure is indeed

essentially constant across the entire range of the distribution of expenditure. The slope

coefficient falls in between η ∈ (0.315, 0.362) depending on which additional controls are

chosen, implying that our “macroestimate” of η = 0.93 is higher then the microestimate

that exploits cross-sectional variation.

B.3.8 Validating the First-Order Approximation

In Figure 7, we reported the decomposition of local wage growth into the four compo-

nents highlighted in Proposition 2. In the theory outlined in the paper, the underlying

first-order approximation that decomposes wage growth into the four margins takes the

following form:

26We note that our theory is written in terms of value added. The expenditure data is in terms of final
expenditure data. Herrendorf et al. [2013] show that in general there is no direct mapping between the
preference parameters of the value added and the final good demand system. However, Fan et al. [2022]
show that for the class of PIGL preferences used here, the Engel elasticity η is portable between the final
good and value added demand system.
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FIGURE A.6: HETEROGENEITY IN FOOD EXPENDITURE SHARES
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Notes: The figure shows the cross-sectional distribution of the individual expenditures shares on food
(left panel) and the bin scattered relationship between the (log) expenditure share on food and (log) total
expenditure (right panel). The relationship in the right panel is conditional on a set of location and family
size fixed effects.

(A.21)

d ln wrt = φM (srA)

(
1
σ

d lnDt +
σ− 1

σ
d ln ZrMt

)
+ φA (srA) (d ln ZrAt − αd ln `rt) .

The theory also permits a similar first-order approximation can be derived for the change

in local agricultural employment shares

(A.22) dsrAt = ψ (srA)

(
d ln ZrAt − αd ln `rt −

σ− 1
σ

d ln ZrMt −
1
σ

d lnDrt

)
,

In the quantitative model there is an additional “agricultural demand” term in these ap-

proximations that emerges once there are trade costs for agricultural goods, which we

abstracted from in the main theory but re-introduce in the quantitative version of the

model.

In Figure A.7, we show that equations A.21 and A.22 provide an excellent fit of the data

despite being an approximation. This provides justification for using these equations to

decompose local wage growth and industrialization in Section 5. Specifically, the left

panel shows the correlation between local wage growth based on equation (A.21) and

local wage growth stemming from the non-linear solution of the model. If the model
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FIGURE A.7: ACCURACY OF THE FIRST-ORDER-APPROXIMATION OF THE MARGINS OF
LOCAL WAGE GROWTH AND INDUSTRIALIZATION
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Notes: The left panel shows the correlation between actual wage growth in the model and predicted wage
growth based on equation A.21. The right panel shows the correlation between actual agricultural employ-
ment share changes in the model and predicted agricultural employment share changes based on a first
order approximation in the model. Each dot a is a commuting zone. and the size of the dots is proportional
to a commuting zone’s total employment in 1880. The dashed grey line is a 45 degree line. The solid line in
each panel is a weighted fit line using 1880 total employment as weights.

were to follow equation (A.21) exactly, the results should lie on a 45 degree line. Each red

dot represents a commuting zone, the grey dashed line is a 45 degree line, and the solid

red line represents the best fit through the data. The right panel compares the change in

the local agricultural employment share based on equation A.22 to the change in the local

agricultural employment in the simulated model. The linear fit line is again very close to

the grey dashed 45 degree line providing support for using the first-order approximation

in our analysis.
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