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Abstract

We propose a novel theory to study the relationship between local economic devel-

opment and aggregate structural change. Two forces shape regional variation in

wage growth and industrialization: technological catch-up, often associated with

spatial convergence, and regional sectoral specialization leading to differences in

exposure to aggregate reallocation. We study these forces in the US economy be-

tween 1880 and 1920 when its agricultural employment share fell from 50% to 25%,

and regional convergence was strong. We show that technological catch-up saved

rural America from the adverse consequences of its exposure to the agricultural

decline; without catch-up, spatial inequality would have increased.
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INTRODUCTION

A key economic question is whether poor locations tend to grow faster than rich ones,
leading to regional convergence. Popular narratives about the relationship between
long-run economic growth and spatial economic development typically highlight one
of two forces. On the one hand, the diffusion of technology might allow poor regions
far from the technological frontier to benefit temporarily from catch-up growth. On the
other hand, structural change systematically shifts aggregate demand across sectors,
thereby hurting regions whose sectoral specialization makes them particularly exposed
to declining industries. A large macroeconomic literature on regional convergence
highlights the catch-up channel but is silent on exposure differences, whereas the
structural change literature typically ignores the spatial dimension altogether.

In this paper, we quantify the importance of both channels during a period of rapid
sectoral reallocation and unbalanced spatial growth: the first structural transformation
of the US economy. Between 1880 and 1920, average incomes grew by 60%, and the
agricultural employment share halved from 50% to 25%. At the same time, this period
exhibited strong spatial convergence: wages grew substantially faster in regions that
started out initially poor, and agricultural employment shares declined faster in more
agricultural locations. This episode is a prime example of the value of studying regional
productivity convergence and sectoral reallocation in a unified framework: because
agricultural regions were poor in 1880, they were the natural beneficiaries of catch-up
growth, but also particularly exposed to the declining agricultural sector.

We introduce a quantitative framework of spatial structural change tailored to such
an analysis. Our theory rests crucially on recent advances in quantitative spatial
economics that allow us to combine elements from the macroeconomic literature on
structural change and regional convergence in a tractable, yet quantifiable framework.
Borrowing from the structural change literature, our economy features two sectors, an
agricultural and a non-agricultural, across which workers are not perfectly substitutable,
making sectoral reallocation costly. Productivity growth in either sector makes the
economy richer, and non-homothetic preferences imply that economic growth reduces
the spending share on agricultural goods. We then embed these ingredients into
a standard model of economic geography, where locations differ in their sectoral
productivity, amenities, and the supply of agricultural land. Workers are spatially
mobile subject to moving costs.

A central element of the model is the possibility of spatial productivity convergence.
Our modelling follows the macroeconomic literature on cross-country convergence,
which posits that a region’s productivity growth depends directly on its distance to
the technological frontier. The growth process in each location is thus parsimoniously
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described by two parameters: the growth rate of the technological frontier and the
strength of catch-up growth, which regulates the growth premium of locations behind
the frontier. As a result, individual locations and sectors can be on different growth
trajectories at any point in time. Crucially, our theory links catch-up potential to
regional differences in productivity within each sector and not to sectoral specialization.
Whether agriculturally specialized locations benefit from productivity convergence
therefore hinges on whether their productivity is low, relative to other locations.

Our theory permits an analytical characterization of the determinants of local wage
growth and industrialization. In particular, we derive a concise representation of the
two countervailing narratives of unbalanced productivity growth versus regional ex-
posure. First, we show that in the absence of technological catch-up, the structural
transformation necessarily generates urban-biased growth, that is, faster growth in
industrialized, high-wage locations. The intuition is reminiscent of “Bartik”-like in-
struments: the secular reallocation away from agriculture is hurting regions with a
comparative advantage in agricultural production whose specialization makes them
particularly exposed to the agricultural decline. Second, our theory illuminates that
rural convergence can be driven either by (exogenous) technological catch-up growth
or by (endogenous) changes in market access and regional migration that benefit agri-
culturally specialized labor markets, highlighting the need to jointly analyze the spatial
dimension of structural change and technological convergence.

To quantify the strength of catch-up growth and differential spatial exposure, we
structurally estimate our model using time series and regional data for the US between
1880 and 1920. Our calibration strategy reflects the theory’s two building blocks: a
macro model of structural change and a spatial model of regional convergence. We
calibrate the key parameters related to structural change to match classic aggregate
time-series data: we choose the growth rates of the technological frontier in each sector
and the preference parameters governing the non-homotheticity of preferences to match
the time series of sectoral prices, GDP growth, and the agricultural employment share.

On the spatial side, we first use our model to infer each region’s initial productivity
in each sector in an unrestricted way from the joint distribution of local wages and
sectoral employment shares in 1880 (while controlling for local employment and the
availability of agricultural land in a model-consistent way). We find agriculturally
specialized locations were – on average – behind the technological frontier in both
sectors, providing them with the potential to catch up. We then use indirect inference
to estimate the parameters governing the extent of catch-up growth and hence the
evolution of productivity between 1880 and 1920. We do so by ensuring the model
matches the empirical relationships between initial agricultural specialization and
subsequent wage growth, changes in agricultural employment shares, and population
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flows across space.

Our estimates imply annual productivity growth in both sectors was roughly two
percentage points higher in rural locations than in urban regions close to the techno-
logical frontier. Moreover, this rural productivity premium played a central role in the
spatial convergence of wages. Both in the calibrated model and the data, the wage gap
between industrialized labor markets and the rural hinterland shrunk by 40% between
1880 and 1920. By contrast, an alternative ”macro-calibration” in which we shut down
the possibility of regional catch-up growth shows the rural-urban wage gap would
have increased by 15%. Hence, catch-up growth saved rural America from the adverse
exposure effects of the structural transformation.

We also show technological catch-up in the two sectors played fundamentally different
roles. Whereas faster productivity growth in agriculture explains why rural locations
experienced faster wage growth, technological catch-up in non-agriculture was the
main reason rural labor markets industrialized. The interaction between unbalanced
productivity growth and regional differences in sectoral exposure is again central
for this finding: precisely because of their agricultural exposure, rural wages are
especially sensitive to agricultural productivity growth. But without catch-up growth
in non-agricultural technology, rural locations would have increased their agricultural
employment share rather than industrialized.

Given the central importance of rural catch-up growth, we also provide direct empirical
evidence for possible mechanisms. Empirically, we document that various canonical
development indicators, such as educational attainment, capital-deepening, firm size,
financial development, and market integration via the expansion of the railroad net-
work, grew substantially faster in rural America between 1880 and 1920. Whereas
our theory summarizes these developments in a scalar measure of productivity in
each location, these correlations paint a picture of a period in which a multitude of
institutional and technological changes came together to systematically benefit remote,
agricultural locations.

Although many aspects of our theory are specific to the transition out of agriculture,
our framework also provides insights into the spatial incidence of the recent transi-
tion toward services, where spatial inequality has increased. Our analysis suggests
changes in the potential for catch-up growth could be responsible. Whereas capital,
schools, and railroad tracks might have been easy to move into rural regions, the human
capital required in today’s high-skill service production may be unwilling to settle
in declining manufacturing towns outside big cities. As a result, today’s divergent
wage-growth patterns may reflect regional differences in exposure dominating the
weakened convergence forces that remain.
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Related Literature We contribute to the literature on structural change by combining
elements of a standard macroeconomic model of structural change (e.g., Herrendorf,
Rogerson, and Valentinyi (2014)) with recent advances in spatial economics (e.g., Allen
and Arkolakis (2014), Redding and Rossi-Hansberg (2017)).1 Most contributions in
the structural change literature seek to explain the process of structural change at the
aggregate level.2 Notable exceptions are Caselli and Coleman II (2001), who use a
stylized two-region model to highlight the link between structural change and regional
convergence in the US, Nagy (2023), who examines the process of city formation in the
US before 1860, and Michaels, Rauch, and Redding (2012), who study the empirical
link between population density and population growth in the US in 1880.3

We also add to the classic macroeconomic literature on convergence across countries
(see, e.g., Acemoglu, Aghion, and Zilibotti (2006) or Desmet, Nagy, and Rossi-Hansberg
(2018)) and regions (see, e.g., Barro and Sala-i Martin (1991, 1992) or Blanchard, Katz,
Hall, and Eichengreen (1992)). Our analysis highlights the need to explicitly model the
spatial and sectoral links between local labor markets to consistently estimate spatial
productivity convergence in the presence of secular sectoral reallocation.

Besides our particular question of interest, we also make a distinct theoretical con-
tribution by showing how to tractably integrate a flexible class of non-homothetic
preferences, the price-independent generalized linear class (PIGL), recently popular-
ized by Boppart (2014), into a general-equilibrium trade and geography model. Its
convenient aggregation properties makes the PIGL class not only a natural choice in
our setting, but also potentially useful for other applications.

The paper is structured as follows. Section 1 documents the patterns of regional
convergence that motivate our analysis. Section 2 contains our theory. We describe the
calibration of our model in Section 3 and quantify the link between catch-up growth
and rural convergence in Section 4.

1. RURAL CONVERGENCE: 1880-1920

In this section, we document the empirical patterns of convergence in agricultural
employment shares and averages wages across regions during the first structural
transformation of the US between 1880 and 1920.4 We use data from the full-count
Decennial Census files and county-level tabulations of the Census of Manufacturing.

1The quantitative spatial literature has studied misallocation (Fajgelbaum, Morales, Suárez Serrato, and Zidar (2019)), trade liberalization
(Fajgelbaum and Redding (2022), Caliendo, Dvorkin, and Parro (2019)), and market access (Redding and Sturm (2008)).

2See Kongsamut, Rebelo, and Xie (2001), Comin, Lashkari, and Mestieri (2021), and Boppart (2014) for papers on non-homothetic
demand, and Ngai and Pissarides (2007) and Acemoglu and Guerrieri (2008) for papers that focus on the supply side.

3Recent papers study the spatial dimension of the transition toward services (see, e.g., Desmet and Rossi-Hansberg (2014), Eckert,
Ganapati, and Walsh (2020a), or Fan, Peters, and Zilibotti (2022)) and structural change in developing countries (e.g., Pellegrina and Sotelo
(2021), Sotelo (2020), Farrokhi and Pellegrina (2020)).

4We focus on this period due to data availability and to avoid the Great Depression.
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FIGURE 1: SPATIAL STRUCTURAL CHANGE AND RURAL CATCH-UP
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Notes: The left panel shows a scatter plot between commuting zones’ agricultural employment shares and average earnings in 1880 and a
Lowess fit line. The size of the points is proportional to the total workforce in each commuting zone. The right panel shows two fitted
fractional polynomial curves along with 95% confidence intervals. They show the relationship between commuting zones’ agricultural
employment share in 1880 and (1) the change in the agricultural employment share between 1880 and 1920 (left axis) and (2) their average
earnings growth between 1880 and 1920 (right axis) relative to the nationwide average. In fitting the polynomials, we weight by commuting
zones’ total employment in 1880.

We focus on states that had joined the Union by 1860, and aggregate county-level
observations to constant-boundary “commuting zones” using the crosswalk by Eckert,
Gvirtz, Liang, and Peters (2020b).5

The left panel of Figure 1 shows the correlation of agricultural specialization and aver-
age wages across US regions in 1880. The relationship is tight and strongly negative:
agricultural specialization and poverty were almost synonymous in the 1880 US econ-
omy. In the right panel, we document the striking importance of rural convergence.
The red line shows wages converged dramatically between 1880 and 1920: more agri-
cultural regions showed substantially faster wage growth than less agricultural ones.
Quantitatively, the urban-rural wage gap declined by 0.4 log points between 1880 and
1920.

The blue line shows rural locations also caught up in their employment structure:
on average, they saw much faster declines in their agricultural employment share.
However, this convergence in agricultural employment shares was not monotone but
exhibited a distinct U-shape. The regions that industrialized the most were regions in
an intermediate range of agricultural specialization. The typical commuting zone with
an agricultural employment share of 60% in 1880 experienced a 20-percentage-point
decline.

The patterns of rural convergence shown in Figure 1 are robust to changes in the
spatial unit of observation and the inclusion of various fixed effects. This is seen in

5We discuss the data in more detail in Section 4.
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TABLE 1: SPATIAL STRUCTURAL CHANGE AND RURAL CATCH-UP

PANEL A: LOG AVERAGE WAGES IN 1880

srAt -0.820∗∗∗ -0.794∗∗∗ -0.930∗∗∗ -0.778∗∗∗ -0.753∗∗∗

(0.0268) (0.0352) (0.0533) (0.0168) (0.0218)

R2 0.546 0.762 0.700 0.736 0.757

PANEL B: WAGE GROWTH

srAt 0.251∗∗∗ 0.357∗∗∗ 0.426∗∗∗ 0.331∗∗∗ 0.346∗∗∗

(0.0220) (0.0381) (0.0603) (0.0192) (0.0263)

R2 0.839 0.855 0.732 0.718 0.712

PANEL C: CHANGE IN AGRI. EMP. SHARE

srAt -0.484∗∗∗ -0.466∗∗∗ -0.372∗∗∗ -0.380∗∗∗ -0.383∗∗∗

(0.0279) (0.0342) (0.0693) (0.0161) (0.0208)
s2

rAt 0.451∗∗∗ 0.427∗∗∗ 0.241∗∗∗ 0.346∗∗∗ 0.357∗∗∗

(0.0317) (0.0386) (0.0634) (0.0188) (0.0227)

R2 0.309 0.362 0.170 0.234 0.316

Observations 990 990 990 3910 3910
Geography CZ CZ CZ County County
FEs State State State CZ
Weighted Yes Yes Yes Yes

Notes: All regressions in panels B and C are pooled for the two periods 1880-1900 and 1900-1920 and include a fixed effect for each period.
Data on wages are from the Census of Manufacturing; all other data are from the full-count US Decennial Census files. Robust standard
errors in parentheses. ∗ , ∗∗ , and ∗∗∗ denote statistical significance at the 10%, 5% and 1% level, respectively.

Table 1, where we report the results of three regressions: (1) log wages on agricultural
employment shares in 1880 (Panel A), (2) local wage growth on the initial agricultural
employment share (Panel B), and (3) changes in agricultural employment shares on
initial agricultural employment shares and their square (Panel C).

For all regressions, we report our baseline results, corresponding to Figure 1, in column
1. In columns 2 and 3, we document that these results are not driven by weighting
commuting zones by their size and are robust to the inclusion of state fixed effects.
In columns 4 and 5, we perform the same analysis at the county level with state
and commuting-zone fixed effects, respectively. Across all of these specifications,
we see the same pattern of spatial convergence shown in Figure 1: the period of US
industrialization between 1880 and 1920 was a time of distinct regional integration.
Initially poor agricultural regions caught up to more industrialized regions in terms of
wages, and industrialization exhibited a U-shape as a function of initial agricultural
specialization.

We focus much of the analysis in the rest of the paper on the relationship between initial
agricultural employment shares and subsequent wage growth and industrialization.
However, in our quantitative analysis, we also incorporate data on employment growth.
Michaels et al. (2012) document a U-shaped relationship between initial agricultural
specialization and subsequent population growth — a finding we confirm below. Any
attempt to connect a quantitative theory with data on employment growth in the
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historic US has to grapple with the fact that much of it occurred for reasons outside
most theoretical models. In our case, the vast inflows of foreign immigrants (who
predominantly settled in cities), the large discrepancy in local fertility rates (that were
much higher in rural areas), and the fact that the US territory was still expanding are
of particular importance. Below, we provide an explicit methodology to account for
regional employment growth due to such exogenous factors without explaining their
determinants within our theory.

Next, we present a theory of spatial structural change that can speak to the patterns of
convergence documented in Figure 1.

2. THEORY

Our theory of spatial structural change uses the workhorse model of economic geogra-
phy (see, e.g., Redding and Rossi-Hansberg (2017)) to combine a macroeconomic theory
of structural change (see, e.g., Herrendorf et al. (2014)) with insights from the literature
on cross-country convergence (see, e.g., Acemoglu et al. (2006) or Desmet et al. (2018)).
We provide detailed derivations in Section 2 of the Appendix.

2.1 Preferences, Technology, and Labor Supply

The economy consists of a set of discrete locations, indexed by r = 1, ..., R, and two
sectors, agriculture and non-agriculture, indexed by s = A, M, respectively. At time t,
the economy is inhabited by a mass L̄t of workers. We suppress time subscripts when
describing the static elements of our model.

Preferences Individuals value the consumption of agricultural and non-agricultural
goods. Preferences for these sectoral outputs are non-homothetic to generate the shifts
in sectoral demand associated with the structural transformation. Following Boppart
(2014), we assume preferences fall in the non-homothetic PIGL (Price-Independent
Generalized Linear) class. As we show in detail in Section 2.3, these preferences have
convenient aggregation properties that make them a natural choice for models of trade
and economic geography.

PIGL preferences do not have an explicit utility representation but are defined implicitly
via the indirect utility function. We parametrize the indirect utility of an agent with
expenditure y facing prices (PrA, PrM) as

(1) V (y, PrA, PrM) =
1
η

(
y

Pϕ
rAP1−ϕ

rM

)η

− ν ln
(

PrA

PrM

)
,

where η,ϕ ∈ (0,1).

For now, we assume trade costs are zero for the agricultural good. Doing so allows us
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to treat the agricultural good as the numeraire, that is, PrA = PA = 1, and to simplify
the notation. Our quantitative exercise below features trade costs in both sectors.

Applying Roy’s identity yields the following expression for an individual’s expenditure
share on the agricultural good:

ϑA (y, PM) = ϕ + ν
(

y/P1−ϕ
rM

)−η
.(2)

Equation (2) shows the demand system is akin to a Cobb-Douglas specification with a
non-homothetic adjustment. Conveniently, the term y/P1−ϕ

rM , which we also sometimes
refer to as “real income,” emerges as a summary statistic for such non-homotheticities.
Since η > 0, consumers reduce their relative agricultural spending as they grow richer
as long as ν > 0. Moreover, the expenditure share asymptotes to ϕ as incomes grow
large. If ν = 0 and η = 1, equation (1) reduces to a Cobb Douglas utility function with
constant expenditure shares.6 We refer to the elasticity parameter η as the “Engel
elasticity” because it determines the shape of consumers’ Engel curves. The larger the
Engel elasticity, the stronger the effect of real income on consumer demand.7

Technology Each region can produce agricultural and non-agricultural goods. A
representative local firm produces the agricultural good using the following technology:

YrA = ZrAH1−α
rA Tα

r ,

where ZrA is the local productivity in agriculture, HrAt is agricultural labor (measured
in efficiency units), and Tr denotes agricultural land. We assume agricultural land is
in fixed supply in each region. As result, the land share, α, indexes the strength of
decreasing returns to scale.

We model the non-agricultural sector in the standard “CES-monopolistic-competition”
way. Individual firms pay a fixed cost of entry, fE, denoted in units of non-agricultural
labor. Upon entering, each firm produces a differentiated variety, indexed by ω, using
the same constant-returns-to-scale, labor-only production technology with productivity
ZrM. Firms operate for a single period, which we define as 20 years in our empirical
application. We assume free entry, so new firms enter until their profits equal their fixed
costs. Total demand for non-agricultural labor in region r, HrM, is therefore the sum of
entry and production labor, HrE and HrP, respectively. The market for non-agricultural
varieties is monopolistically competitive.

In each location, a representative firm assembles the differentiated non-agricultural

6In our quantitative application, we choose the level of regional productivity to ensure expenditure shares are between 0 and 1. This
amounts to assuming consumers are sufficiently rich to be willing to consume non-agricultural goods in positive quantities.

7The elasticity of substitution between the value added generated in the two sectors is given by ϱ = 1 + η(ϑA − ϕ)2/(ϑA (1 − ϑA)).
Hence, it is not a structural parameter but varies across space and the income distribution. Note ϱ is increasing in ϑA (i.e., decreasing in real
income) and satisfies limϑA→ϕ ϱ = 1.
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varieties into a final consumption good:

YrM =

(∫ N

0
y (ω)

σ−1
σ dω

) σ
σ−1

=

(
R

∑
j=1

∫ Nj

0
y (ω)

σ−1
σ dω

) σ
σ−1

.

Here, N is the total number of varieties available and Nr denotes the number of varieties
produced in region r. Non-agricultural varieties are subject to the usual iceberg trade
costs. The presence of such trade costs implies that the composition and price of the
final non-agricultural good differs across locations.

Sectoral Labor Supply Structural change exerts pressure on local economies to reallo-
cate labor across industries. Workers’ ability to move out of agriculture depends on the
extent to which their skills are substitutable across sectors. To capture this reallocation
margin, we model sectoral labor supply using the typical Roy-type machinery.

An individual worker i in region r can supply zi
s efficiency units to sector s that are

drawn from a sector-specific Fréchet distribution, P
(
zi

s ≤ z
)
= Fs (z) = e−z−ζ

. The
parameter ζ captures the dispersion of efficiency units across workers in sector s.

We denote total payments per efficiency unit of labor in region r and sector s by
wrs and assume the payments to agricultural land in a location are distributed to
local agricultural workers and included in wrA. Each worker i chooses a sector of
employment to maximize their income, yi

r, so that yi
r = maxs

{
zi

swrs
}

. As a result, the
income distribution in each location inherits the Fréchet distribution of the underlying
efficiency units, that is,

Fr (y) = e−(y/wr)
−ζ

where wr =
(

wζ
rA + wζ

rM

)1/ζ
,

where the term wr denotes average earnings in region r. Similarly, sectoral employment
shares and aggregate labor supply are given by:

(3) srs = (wrs/wr)
ζ and Hrs = Γζ Lr (wrs/wr)

ζ−1 ,

where Γx ≡ Γ (1 − 1/x) and Γ(·) is the gamma function.

Equation (3) highlights that ζ governs the sectoral-labor-supply elasticity: the higher
ζ, the higher the elasticity of labor supply. As ζ → ∞, the heterogeneity in efficiency
units disappears and labor is fully elastic across industries. This limiting case is the
benchmark of most macroeconomic models of the structural transformation. We show
below that the parameter ζ is a crucial determinant of the spatial exposure to sectoral
reallocation.
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Spatial Mobility At the beginning of each period, workers can move to another
location. We denote the distribution of workers across regions at the beginning and
end of a period by {LY

rt}r and {Lrt}r, respectively.

We assume workers learn their labor productivity in each sector only after arriving at
a destination. The indirect utility of worker i from location r in location r′ at time t is
thus given by

U i
rr′t ≡ VrtBrtµrr′ui

rt, s.t. Vrt ≡
∫

V (y, prt)dFrt (y) and Brt = BrL−ρ
rt .

The term Vrt denotes expected consumption utility reflecting a worker’s uncertainty
about the efficiency units of labor drawn upon arrival in region r. In Section 2.3
below, we derive a closed-form expression for Vrt. The term Brt is an amenity term,
which comprises an exogenous and endogenous part. The parameter ρ > 0 indexes
the strength of congestion forces such as the scarcity of local housing or other non-
traded goods. The matrix µrr′ ∈ (0,1] reflects the cost of moving: destination utility is
discounted depending on a worker’s region of origin. We assume workers who stay put
enjoy the full local utility, that is, µrr = 1. Finally, ui

rt reflects a worker-location-specific
preference shifter, which is drawn prior to choosing a region, i.i.d. from a Fréchet
distribution with shape parameter ε.

Using standard properties of the Fréchet distribution, the share of workers moving
from location r to r′ can be written as

(4) mrr′t =
(µrr′Vr′tBr′t)

ε

∑j
(
µrjVjtBjt

)ε .

In addition to internal migration, we also allow for changes in the local labor force that
are not modelled explicitly. In particular, international immigration was substantial
during the time period of our study, and local birth rates varied considerably. To capture
these factors, we follow Cruz and Rossi-Hansberg (2021) and allow for an exogenous
component of employment growth, nrt, that links the beginning-of-period distribution
of workers, {LY

rt}r, to the end-of-period workforce of the previous period, {Lrt−1}r,
according to LY

rt = nrt−1Lrt−1. As a result, the law of motion for local employment takes
the form

Lrt = ∑
r′

mr′rtLY
r′t = ∑

r′
mr′rtnr′t−1Lr′t−1,

where mr′rt is given in equation (4). The size of region r is thus determined by its
relative attractiveness (mr′rt), its size in the past (Lrt−1), and exogenous employment
growth (nrt−1).
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2.2 Catch-Up Growth and Productivity Convergence

A key aspect of our theory is the possibility of catch-up growth. To model the poten-
tial of a location to improve its productivity (relative to others), we follow a large
macroeconomic literature on cross-country convergence, which posits that productivity
growth depends on the level of productivity relative to the productivity frontier; see,
for example Acemoglu et al. (2006), Akcigit, Alp, and Peters (2021), and Desmet et al.
(2018).

Specifically, we adopt a parsimonious parametrization of the region- and sector-specific
productivity terms ZrA and ZrM. Let Zst denote a common sector-specific productivity
shifter that grows at the constant rate gs. We assume Zrst ≤ Zst, and hence also refer to
Zst as the sectoral frontier. In our application, we take Zst to be the highest productivity
in sector s in the US.

We thus model the evolution of region r’s productivity in sector s as

(5) d ln Zrst = gs + λs ln
(

Zst

Zrst

)
for s = A, M.

The productivity process in equation (5) exhibits different spatial biases depending on
the value of a single parameter, λs. If λs = 0, sectoral productivity grows at the same
rate in all regions and the spatial productivity distribution in sector s is stationary. If
λs > 0, less productive regions benefit from their backwardness and grow at a faster
rate. If λs < 0, the opposite is the case and technologically backward locations fall
further behind.8

Our interpretation of ZrAt and ZrMt is intentionally broad. A region’s “benefit of
backwardness” could be due to actual spatial technology diffusion, where lagging
localities adopt existing techniques and catch up to the technological frontier. But
catch-up growth could also be driven by infrastructure investments, capital deepening,
or other institutional changes that spatially diffuse with a time lag and reach less
productive locations at later stages of economic development. In Section 4.3 below, we
provide direct empirical evidence for this pattern of catch-up growth for a variety of
development indicators.

Importantly, equation (5) does not hardwire any specific relationship between local pro-
ductivity growth and the current level of sectoral specialization. Whether agriculturally
specialized locations experience faster growth depends on why they specialize in the
agricultural sector. If agricultural locations have, on average, lower physical productiv-

8If λs > 0, equation (5) implies regional productivity differences disappear in the long run. This assumption is for simplicity only.
Suppose equation (5) were given by d ln Zrst = gs + λs ln

(
Zst/Zrst

)
− µrs, where µrs ≥ 0. Then, Zrst → e−µrs/λs Zst.For the case of µrs = 0,

we recover Zrst → Zst . In our empirical application, which covers a 40-year period, this long-run result is not consequential.
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ity ZrAt or ZrMt, they benefit from catch-up growth. However, a comparative advantage
in agriculture is also consistent with an absolute advantage in both sectors or could be
entirely due to an abundance of agricultural land Tr. As a result, our model does not
mechanically produce a systematic relationship between sectoral specialization and
future growth but delivers it as an outcome of our structural estimation.

For simplicity, we assumed the diffusion process in (5) does not reflect any geographic
attributes. For example, we could have assumed productivity growth in location r
depends on the productivity gap and the geographical distance from the technological
frontier. However, local productivity growth will be correlated across labor markets if
the initial cross-sectional distribution of productivity, {Zrst}rs, is spatially correlated.
Similarly, we take the process in (5) as exogenous and structurally estimate gs and λs.
Although microfounding (5) would be interesting (e.g., in the spirit of Acemoglu et al.
(2006)), we focus instead on understanding the quantitative implications of catch-up
growth rather than its fundamental source.

2.3 Aggregate Demand and Spatial Welfare

To compute the equilibrium, we need to characterize workers’ expected utility Vrt

and the aggregate demand system. As we show in Section A.2.3 in the Appendix, the
combination of PIGL preferences and the Fréchet distribution of individual income
allows us to derive closed-form expressions for these objects, despite the fact that
consumer demand is non-homothetic.

First, the aggregate expenditure share on agricultural goods in region r, ϑrA, is given by

ϑrA ≡
∫

ϑA (y, pr)ydFr (y)∫
ydFr (y)

= ϕ + νRC
(

wr/P1−ϕ
rM

)−η
,

where νRC = ν
Γζ/(1−η)

Γζ
is a composite parameter that depends on the underlying micro

preference parameter ν, the second moment of the income distribution ζ, and the Engel
elasticity η. Hence, the aggregate demand system is akin to the one generated by a
representative agent who earns the average wage, wrt, and has a preference parameter
νRC.

Importantly, the aggregate demand system is still non-homothetic: an increase in
average income reduces the aggregate spending share on agricultural goods. As
we show in Section 2.5, such demand shifts put downward pressure on wages in
agriculturally specialized locations, making aggregate growth urban-biased.

Second, we can also derive an intuitive expression for Vr:

(6) Vr =
∫

V (y, pr)dFr (y) =
1
η

Γ ζ
η

(
wr/P1−ϕ

rM

)η
− ν ln (1/PrM) .
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Expected utility in region r resembles the indirect utility of a representative agent who
earns average income wrt and has a “taste” parameter Γζ/η determining the relative
importance of real income and relative prices.

2.4 Equilibrium Wages and Equilibrium Industrialization

Our theory permits an explicit characterization of equilibrium wages and agricultural
employment shares across space. These two objects are our main outcomes of interest,
and we relegate a discussion of the full equilibrium system to Appendix A.1. The
equilibrium of our model is defined as follows:

Definition. Let {Lr0, ZrA0, ZrM0}r be the initial distribution of workers and productivity,
and let

{
ZAt, ZMt

}
t be a path of the technological frontier. An equilibrium is a sequence of

prices {PrAt, PrMt}rt, wages {wrAt,wrMt}rt, rental rates {Rrt}rt, non-agricultural varieties
{Nrt}rt, employment allocations {HrAt, HrEt, HrPt}rt, local employment {Lrt}rt, individual
consumption

{
ci

rAt,
[
ci

rMt (ω)
]

ω

}i
rt, and productivity processes {ZrAt, ZrMt}rt, such that (i)

consumers’ consumption and location choices maximize utility, (ii) the creation of local vari-
eties is consistent with free entry, (iii) firms maximize profits, (iv) all markets clear, and (v)
productivity evolves according to the law of motion (5).

To derive an explicit formulation of equilibrium wages and employment shares, we
exploit a convenient representation of aggregate revenue in the non-agricultural sector.
Under free entry, the mass of firms is proportional to non-agricultural production labor
who receive a fixed fraction of sectoral revenue. As a result, a location’s non-agricultural
revenue, RrM, is given by

(7) RrM = f̃ED
1
σ
r Z

σ−1
σ

rM HrM, where Dr ≡ ∑
j

τ1−σ
rjM Pσ−1

jM ϑjMΓζ Ljwj,

where Dr is a measure of the effective demand for non-agricultural products in region
r and f̃E is an inconsequential composite constant. Hence, non-agricultural revenue
takes the form of a constant-returns-to-scale production function, with revenue TFP
being a combination of physical productivity, ZrM, and the endogenous demand term,
Dr. The presence of Dr highlights the link between structural change and sectoral
revenue productivity: as incomes rise and spending shifts toward non-agricultural
goods, revenue productivity in the non-agricultural sector increases.

Using the representation in equation (7), local wages and employment shares can be
expressed in the following way.

Proposition 1. Let ℓr ≡ Lr/Tr denote employment density in region r and define the following
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“effective” sectoral productivity terms in region r:

(8) ZrM ≡ Z
σ−1

σ
rM f̃−1

E D
1
σ
r and ZrA ≡ ZrA

(
Γζℓr

)−α .

Local average wages wrt and agricultural employment shares srAt are then determined by

(9) 1 =

(
ZrM

wr

)ζ

+

(
ZrA

wr

) ζ
α(ζ−1)+1

;
s1+(ζ−1)α

rA
1 − srA

=

(
ZrA

ZrM

)ζ

.

Proof. See Section A.3 in the Appendix.

Proposition 1 shows local wages and sectoral specialization are fully determined from
two sufficient statistics, ZrM and ZrA, that we refer to as “effective” sectoral productivity.
Whereas both Dr and ℓr are endogenous and intrinsically linked to the way locations
spatially interact on the market for goods (Dr) and in terms of inter-regional migration
(ℓr), Proposition 1 shows that as far as wages and sectoral specialization are concerned,
they are isomorphic to physical sectoral productivity Zrs.

Proposition 1 is important both conceptually and in terms of its measurement impli-
cations. On the conceptual side, it highlights that local growth and industrialization
can be driven by three distinct channels: growth in physical productivity Zrs, changes
in employment density ℓr through migration or employment growth, and shifts in
non-agricultural demand Dr. As such, Proposition 1 highlights the value of jointly
studying sectoral reallocation and technological catch-up growth, because both shape
the spatial distribution of wages and sectoral specialization.

At the same time, Proposition 1 also highlights an important measurement challenge.
To identify the spatial distribution of physical productivity Zrs from data on wages
and employment shares, taking into account the spatial linkages between locations is
important. For example, a region can have a comparative advantage in agriculture
either because of high relative productivity ZrA/ZrM or because of abundant land
supply and little non-agricultural demand. Similarly, high wages can either reflect
physical productivity or employment density and market access.

Whether regional wages and employment shares reflect physical productivity or dif-
ferences in employment density or demand is also important to understand regions’
ability to benefit from catch-up growth. If differences in physical productivity drive
most of the variation in ZrM, rural locations benefit from catch-up growth because their
ZrM is low by virtue of them being specialized in the agricultural sector and being poor.
If, by contrast, most of the variation in revenue productivity is due to market access,
Dr, the potential for a rural location to benefit from productivity convergence is limited.
Similarly, if most of the variation in agricultural effective productivity, ZrA, is driven
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by differences in employment densities, ℓr, the agricultural productivity distribution
is compressed, and the potential for catch-up growth is minimal. Within the context
of our structural model, we can separately identify Zrs from Dr and ℓr and therefore
estimate the extent of catch-up growth in a model-consistent way.

In addition, equation (9) also stresses that wages depend on the substitutability of
workers across sectors (ζ) and the agricultural land intensity (α). The reason is that
decreasing returns in agriculture imply that the marginal product of labor depends on
the quantity of agricultural labor. To see this directly, note the sectoral factor prices wrM

and wrA can be expressed as follows:

wrM = ZrM; 1 =

(
1 +

(
ZrM

wrA

)ζ
) ζ−1

ζ (ZrA

wrA

) 1
α

.

Non-agricultural wages depend only on ZrM and Dr and are independent of sectoral
labor supply. By contrast, wages in the agricultural sector respond to sectoral labor
supply, which is reflected in their dependence on the effective productivity of the local
non-agricultural sector, ZrM, with which it competes for workers. The sectoral supply
elasticity ζ appears because it shapes how much agricultural wages have to rise to lure
workers away from non-agriculture. Decreasing returns are hence the reason why the
employment density appears in Proposition 1 and why the elasticity of substitution
across sectors helps shape the spatial distribution of wages and employment shares.

2.5 Rural Convergence: Incidence vs. Exposure

Proposition 1 highlighted the static determinants of the cross-section of wages and
employment shares across regions and how they depend on the same two effective
productivity terms. We now leverage these results to study how they translate into
changes in wages and agricultural employment shares across space and what the empir-
ical patterns documented in Section 1 reveal about the underlying mechanisms driving
these changes.

Consider a single region r that takes aggregate prices as given. The following Proposi-
tion describes the determinants of local wage growth and local industrialization, that is,
changes in the agricultural employment share.

Proposition 2. Local wage growth and local industrialization are given by

d lnwrt = ϕ (srA)d lnZrMt + (1 − ϕ (srA))d lnZrAt

dsrAt = ψ (srA) (d lnZrMt − d lnZrAt) ,
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where the two exposure elasticities are given by

(10) ϕr ≡ ϕ (srA) =
(γ + 1) (1 − srA)

γ (1 − sAr) + 1
; ψr ≡ ψ (srA) = − srAt (1 − srAt) ζ

γ (1 − srAt) + 1
,

with γ ≡ α (ζ − 1). The regional incidence of effective productivity growth can be decomposed
as

d lnZrMt =
σ − 1

σ
d ln ZrMt +

1
σ

d lnDrt; d lnZrAt = d ln ZrAt − αd lnℓrt.

Proof. See Section A.3.2 in the Appendix.

Proposition 2 highlights that local wage growth and industrialization vary across space
for two reasons. First, regions differ in their exposure to changes in effective productivity,
and the agricultural employment share srA emerges as the sufficient statistic for the
regional heterogeneity in exposure. Second, effective productivity itself might grow
faster in some regions than in others, d lnZrst ̸= d lnZr′st; that is, locations can differ in
the incidence of growth.

Proposition 2 thus formalizes the two narratives about spatial growth we highlighted
in the beginning: unbalanced productivity growth versus regional specialization in
declining industries. At the same time, it highlights that the relevant notion of local
productivity growth does not merely encompass technological efficiency but that it
captures all factors that influence effective productivity. As a result, differences in the
incidence of growth could be due to (i) technological catch-up (d ln ZrMt and d ln ZrAt),
as well as (ii) local employment growth (d lnℓrt) and (iii) differential changes in non-
agricultural demand (d lnDrt).

The regional differences in exposure are summarized by the two exposure elasticities
ϕr ∈ (0,1) and ψr ∈ (−1,0) shown in Figure 2. Growth in the average wage is a linear
combination of effective productivity growth in each sector, with the weight of the
non-agricultural sector given by ϕr. As shown in the right panel, ϕ′ (·) < 0; that is,
industrial areas benefit especially from non-agricultural effective productivity growth
and rural locations particularly from effective productivity growth in agriculture. The
left panel shows that the industrialization elasticity, ψr, is a U-shaped function of
the agricultural employment share. Changes in comparative advantage, ZrMt/ZrAt,
therefore induce industrialization everywhere, but especially at intermediate levels of
agricultural specialization. Intuitively, the most urban locations cannot reduce their
agricultural employment share, because they already are almost fully industrialized,
whereas the most rural counties have such a strong comparative advantage in the
agricultural sector that labor reallocation is limited.
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FIGURE 2: SPATIAL HETEROGENEITY IN EXPOSURE

(A) INDUSTRIALIZATION, ψ (srA)
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(B) WAGE GROWTH, ϕ (srA)
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Notes: The figure shows the exposure elasticities ϕ (srA) and ψ (srA) given in Proposition 2 as a function of the agricultural employment

share. We depict the case of relative inelastic supply (low ζ) as a darker line and the case of relative elastic supply (high ζ) as a more lightly

shaded line.

Overall, Proposition 2 highlights that the sectoral origins of growth have direct spatial
implications, similar to the logic of “Bartik”-style instruments. But it goes beyond that
by showing the supply elasticity ζ is a key determinant of the strength of such exposure
effects. The reason is that ζ captures the ease of sectoral reallocation and hence the ability
of local labor markets to adjust to changes in the economic environment. Expectedly,
the left panel shows that the higher the sectoral labor elasticity, the stronger the sectoral
reallocation induced by changes in comparative advantage and the more pronounced
the U-shape. Furthermore, the right panel shows non-agricultural productivity growth
becomes a more important determinant of local wage growth, the higher ζ. Differences
in exposure across locations are thus a symptom of the imperfect sectoral substitutability
of workers within locations.9

Figure 2 and the empirically observed U-shaped pattern of industrialization in Figure
1 therefore already hint at the importance of exposure forces in shaping the spatial
pattern of industrialization. At the same time, the strong pro-rural pattern of wage
growth points to growth in the effective productivity in agriculture, ZrAt, to which
agricultural regions are most exposed.

To understand why our finding of rural-biased wage growth implies an important
role for heterogeneity in incidence, suppose all locations experienced the same rate
of effective productivity growth. This case would arise in the absence of catch-up
(λA = λM = 0) and regional migration (d lnℓrt = 0), and if trade were free (Drt = Dt).
Letting ιA and ιM denote the common growth rates of ZrAt and ZrMt, Proposition 2

9Note that in the limit, as labor becomes freely substitutable across sectors, the regional heterogeneity in wage exposure disappears
entirely, that is, limζ→∞ ϕr = 1.
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implies

(11) d lnwrt = ιA + ϕ (srA) (ιM − ιA) ; dsrAt = ψ (srA) (ιM − ιA) .

Because ψ (srA) < 0, the agricultural employment share declines if and only if ιM > ιA.
This, however, also implies wage growth in rural locations should have been lower
because ϕ′ (srA) < 0. Hence, if effective productivity growth had been balanced, the
sectoral reallocation away from agriculture should have led to urban-biased growth
and to a rise in wage inequality. This scenario is, of course, sharply at odds with the
dramatic extent of rural wage convergence documented in Section 1.

To rationalize the observed pattern of rural-biased wage growth, agricultural labor
markets must have experienced faster growth in effective productivity. Proposition
2 highlights such faster wage growth can be achieved in three ways: (i) rural out-
migration, so that employment density ℓrt falls in rural locations; (ii) higher growth in
non-agricultural demand Drt in former agricultural locations; and (iii) faster physical
productivity growth ZrMt and ZrAt through catch-up. Separately identifying these
channels requires a structural model. As we show in our quantitative exercise, the
productivity channel via catch-up played the dominant role in saving rural America. In
its absence, rural labor markets would have fallen further behind and living standards
would have diverged. Hence, both exposure and incidence differences are essential
ingredients of the observed patterns of regional convergence in wages and employment
shares.

3. STRUCTURAL ESTIMATION

We now estimate the structural parameters of our model. Our key finding in this section
is that when accounting for differences in regional exposure, local employment growth,
and region-specific shifts in demand, strong rural catch-up growth in productivity is
required to rationalize the patterns of regional convergence in the data. In Section
4, we quantify the role of this rural growth premium for local wage growth and
industrialization.

3.1 Data Description

We assume a period in the model corresponds to 20 years in the data and obtain total
employment by sector and county from the U.S. Census Bureau’s Decennial Full Count
Census files for 1880, 1900, and 1920 (via IPUMS; see Ruggles, Genadek, Goeken, Grover,
and Sobek (2015)). These data also contain information on children and immigrants,
which we use to estimate the exogenous component of local employment growth, nrt.
We supplement these data with information on average earnings at the county level
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from the Census of Manufacturing and average values of farmland and buildings per
acre for each decade from the Census of Agriculture (both via NHGIS; see Manson,
Schroeder, Van Riper, and Ruggles (2017)).10 Finally, we use longitudinal data at the
individual level from the linked version of the Decennial Census data to measure
migration flows across commuting zones (via IPUMS; see Ruggles et al. (2015)).

We interpret locations in the model as commuting zones and spatially harmonize the
data using the crosswalk in Eckert et al. (2020b). We drop data from states that were not
in the Union by 1880. Our final sample consists of a balanced panel of 495 commuting
zones in 1880, 1900, and 1920 (see B.1 in the Appendix for a map).

In addition, we rely on time-series data from the “Historical Statistics of the United
States” (see Carter, Gartner, Haines, Olmstead, Sutch, Wright et al. (2006)) on real GDP
per capita and the sectoral price indices. In Appendix B.1, we provide more details on
data sources, data construction, and sample selection.

3.2 Estimation Strategy

We quantify our model using a combination of structural estimation and model in-
version. We estimate eight structural parameters within the model: the two catch-up
parameters (λM, λA), the labor-supply elasticity ζ, three preference parameters (ν, η,
ε), and the growth rates of the sectoral productivity frontiers (gM, gA). We do so by
using 11 empirical moments. In addition, we estimate migration and trade costs from
the gravity relationships of trade and migration flows outside of the model. Finally,
given these structural parameters, we invert our model to infer the distribution of local
fundamentals, that is, initial productivity in 1880, [ZrM1880, ZrA1880]r, the endowment
of agricultural land [Tr], and local amenities [Br], to perfectly rationalize the data on
wages, total employment, land rents, and sectoral employment shares in 1880.

Combining model inversion with structural estimation in this way has several virtues.
The inversion part ensures the crucial correlation between regions’ agricultural special-
ization and sector-specific productivity is directly inferred from the data. The reason
is that the initial productivity distribution is chosen so that the model matches the
observed data on employment shares, factor prices, and total employment in 1880.
Hence, we do not assume agricultural regions are necessarily technologically backward,
but let the data flexibly inform this correlation. Parameterizing the productivity process
(instead of inferring new productivity terms for each cross-section) then makes the
model amenable to a counterfactual exercise of what the structural transformation in
the US had looked like in the absence of productivity convergence. It also allows us to
study whether such a parsimonious (and, we think, natural) productivity process can

10In the model, average earnings in manufacturing exactly coincide with average regional earnings, wrt , which we compute as manufac-
turing payroll divided by manufacturing employment. To the best of our knowledge, no data on agricultural wages exist at the county
level.
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quantitatively rationalize the extent of rural convergence documented in Section 1.11

In Table 3 below, we provide an overview of all the parameters of our model and the
empirical moments we use for identification. Despite calibrating most parameters
jointly, we discuss our calibration strategy for particular structural parameters in terms
of the most informative empirical moments.

Aggregate Productivity Growth (gA and gZ) and Consumer Preferences (η, ν, and
ϕ) We estimate the growth rates of the agricultural and non-agricultural frontier,
gA and gNA, and consumers’ preferences, η and ν, to ensure the model matches three
macroeconomic time-series moments: (i) aggregate GDP growth between 1880 and 1920,
(ii) the change in the relative price of agricultural goods between 1880 and 1920, and
(iii) the evolution of the agricultural employment share. Given our strategy of matching
the 1880 cross section exactly, we also match the aggregate agricultural employment
share in 1880 by construction. We thus estimate four parameters by targeting six
macroeconomic moments (two growth rates, 1880-1900 and 1900-1920, for each of the
three outcomes). The remaining preference parameter, ϕ, corresponds to the asymptotic
spending share on agricultural value added for very high incomes. We set ϕ = 0.01,
which is close to the agricultural employment share in the US in 2020.

Regional Fundamentals: [Tr], [Br], and [ZrA1880, ZrM1880] We choose regions’ sec-
toral productivity in 1880, [ZrA1880, ZrM1880]rs, and land endowments, [Tr], to exactly
match the distribution of average earnings {wr1880}r, agricultural employment shares
{srA1880}r, and land rents {Rr1880}, given the observed level of employment {Lr1880}.

Specifically, local wages and employment shares identify the productivity level in
manufacturing ZrM1880 and the combined agricultural productivity index ZrA1880Tα

r . To
separately identify ZrA1880 from Tr, we then use local land rents (relative to the prevail-
ing wage). Note our identification strategy only uses static equilibrium conditions; it
does not assume the economy is in steady-state, nor is it impacted by our particular
assumptions of the convergence process.

Table 2 shows the relationship between the inferred productivity terms and agricultural
employment shares. Agricultural regions in 1880 had both low agricultural productivity,
ZrA1880, and low manufacturing productivity, ZrM1880. Agricultural specialization
was thus a reflection of comparative advantage in agriculture and not of absolute
agricultural advantage. This is seen in column 3, which shows a positive, albeit
statistically insignificant, correlation between agricultural employment shares and
the relative productivity of the agricultural sector. The fact that rural locations were
technologically behind the frontier in both industries implies they benefited from catch-
up growth in both sectors. For each sector separately, we set the level of the economy’s

11This restriction also gives us additional degrees of freedom that we use to estimate the elasticity of substitution ζ.
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TABLE 2: DETERMINANTS OF AGRICULTURAL SPECIALIZATION

ln ZrA1880 ln ZrM1880 ln ZrA1880
ZrM1880

lnℓr1880 ln Br1880

srA1880 -0.231∗∗∗ -0.257∗∗∗ 0.0368 -0.133∗∗∗ -0.115∗∗∗

(0.0110) (0.0114) (0.0292) (0.00630) (0.0304)

Observations 495 495 495 495 495
Adjusted R2 0.430 0.515 0.003 0.493 0.045

Notes: Notes: The table reports the results of a set of bivariate regression srA1880 = α + βxr + ur , where xr = ln ZrA1880 (column 1),
xr = ln ZrM1880 (column 2), xr = ln (ZrA1880/ZrM1880) (column 3), xr = lnℓr1880 (column 4) and xr = ln Br1880 (column 5). Robust standard
errors in parentheses. ∗ , ∗∗ , and ∗∗∗ denote statistical significance at the 10%, 5% and 1% level, respectively.

technological frontier, [Zs1880]s, to the highest regional productivity level in 1880. Table
2 also shows rural labor markets are land-abundant; that is, their employment density
ℓrt is low (column 4). This pattern is implied by the fact that, empirically, agricultural
land rents in rural regions are relatively low compared with more urban locations.

We estimate local amenities [Br]r by requiring that the observed level of employment
{Lr1880} is consistent with individuals’ spatial labor-supply decisions.12 Because our
economy features distance-specific moving costs, the employment distribution is a
dynamic state variable. Hence, given the observed factor prices in 1880, local em-
ployment {Lr1880} depends on both the amenity vector Br, initial employment in 1860,
and differential employment growth (through migration and fertility and migration)
between 1860 and 1880. Because of the territorial expansion of the US, we choose to not
rely on the data in 1860. Instead, we estimate Br so that the employment distribution
would be stationary if productivity and aggregate employment stocks were to remain
constant. Intuitively, we ensure spatial reallocation in our model is driven by changing
factor prices and future employment growth, rather than transitional employment dy-
namics that originate prior to 1880. Table 2 shows amenities are lower in rural regions,
indicating such regions are sparsely populated even given their low wages (column 5).

Technological Catch-Up (λA and λM) and Skill Substitutability (ζ) The key empiri-
cal pattern motivating our analysis is the presence of rural convergence documented
in Section 1: the positive relationship between agricultural specialization and wage
growth, and the U-shaped relationship of agricultural specialization and subsequent in-
dustrialization. In Section 2.5, we showed theoretically that the strength of technological
catch-up (λs) and the sectoral substitutability of skills (ζ) are important determinants
of these patterns. In addition, all else equal, changes in population density affect wage
growth across regions, due to decreasing returns in agriculture.

We exploit these facts to estimate (ζ,λA,λM) by indirect inference. The hallmark of
indirect inference is the use of an auxiliary model to capture aspects of the data upon

12Note also that such calibrated amenities implicitly control for differences in the size of commuting zones. For given wages, commuting
zones with a larger area and correspondingly larger total employment are associated with a higher amenity term.
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which to base the estimation. Indirect inference chooses the parameters of the economic
model so that the parameter estimates of the auxiliary model are as close as possible
when using the actual versus model-generated data. Importantly, indirect inference
does not require that the auxiliary model be correctly specified (see Smith (2008)). For
our auxiliary model, we use the relationships between agricultural specialization and
subsequent wage growth, industrialization, and population growth as summarized by
the following regressions:

d ln w̄rt = δt + δj(r) + βw srAt + νrt;(12)

d lnℓrt = δt + δj(r) + βℓ srAt + νrt;(13)

dsrAt = δt + δj(r) + βsA srAt + γsA s2
rAt + νrt.(14)

Here, δt and δj(r) are period fixed effects and state fixed effects, and time differences are
taken over 20-year intervals. For the case of local industrialization, dsrAt, we estimate a
quadratic relationship to capture the U-shape documented in Figure 1. We match the
four coefficients βw, βℓ, βsA , and γsA in our estimation. The estimates of βw, βsA , and
γsA are reported in column 1 of Table 1. The estimate for βℓ, which is given by −0.36, is
reported in Table A.1 in the Appendix.

In addition to the parameters βsA and γsA , we also target the change in agricultural
employment shares between 1880 and 1920 among the most rural locations. In doing
so, we force our model to match the ”trough” of the U-shaped relationship of local
industrialization and initial agricultural specialization. Specifically, we target the
change in the agricultural employment share between 1880 and 1920 among locations
with at least 80% of their 1880 workforce in agriculture.

The three regressions are informative about λA,λM, and ζ because rural locations have
an absolute disadvantage in both sectors and thus benefit from catch-up growth in both
industries. Hence, wage growth increases in both λA and λM. At the same time, λA

and λM have opposite effects on rural industrialization: if most catch-up growth occurs
in agriculture (non-agriculture), agricultural specialization would increase (decrease) in
rural regions. In addition, the higher βℓ, the higher λA because increasing population
density depresses agricultural wage growth, requiring stronger technological conver-
gence to match the observed patterns of wage convergence. Finally, Figure 2 shows a
larger supply elasticity, ζ, leads to a more pronounced U-shape in industrialization.

Spatial Labor Supply In the model, three parameters shape spatial labor supply.
The first is migration costs. We parameterize migration costs as a function of distance.
Denoting the geographic distance between regions r and r′ by drr′ , migration costs
are given by µrr′ = d−κ

rr′ . The distance elasticity κ is hence an important determinant
of local labor supply. To estimate κ, we use the following log linear relationship for
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inter-regional migration flows implied by our model:

(15) logmrr′t = δo
rt + δd

r′t − κϵ logdrr′ .

In equation (15), δo
rt and δd

r′t are origin and destination fixed effects, respectively, that are
functions of endogenous location-specific objects and parameters. We estimate equation
(15) using commuting-zone-to-commuting-zone migration flows that we constructed
with the linked Census data and find κε ≈ 2.8 (see Appendix B.2.2), consistent with
Allen and Donaldson (2020), who find a distance elasticity of 2.16 across counties during
the same time period in the US.

Second, the sensitivity of migration flows with respect to local factor prices is governed
by the dispersion of location preference shocks, ε. Equation (4) implies the partial
elasticity of migration flows from r to r′ with respect to wages in r′ is given by

(16)
∂ lnmrr′

∂ lnwr′
= εη

1 + ν
ln (Pr′A/Pr′M)

1
η Γζ/η

(
wr′/

(
Pϕ

r′AP1−ϕ
r′M

))η
− ν ln (Pr′A/Pr′M)

 .

Hence, in addition to ε, this elasticity also depends on the Engel elasticity η, the taste
parameter ν, and a set of endogenous variables. We target an average labor-supply
elasticity of two, a consensus estimate in the literature (see, e.g., Allen and Donaldson
(2020), Monte, Redding, and Rossi-Hansberg (2018) or Peters (2022)). In addition, ε

obviously also affects the above-mentioned relationship between specialization and
population growth, βℓ.

Third, spatial labor supply depends directly on the vector of exogenous employment
growth in each region, {nrt}r,t, which captures all employment growth not due to
worker in- or out-migration from or to other regions. Such exogenous sources of local
employment growth capture differences in local demographics, namely, fertility and
mortality rates, and international migration flows, which are unbalanced across space.
Both of these aspects are quantitatively important in the context of our application.
We introduce a new methodology to infer {nrt}r,t from observed data on county-level
immigration, births, and age distributions, which we describe in detail in Appendix
B.2.1. In essence, we choose nrt to match the net effect of the cross-sectional variation
in immigration and fertility rates for each commuting zone, as well as the overall
aggregate rate of employment growth between 1880 and 1920. Importantly, because
workers at the beginning of each period have the option to migrate before becoming
economically active, employment growth in each location remains endogenous in our
theory.
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TABLE 3: STRUCTURAL PARAMETERS AND MODEL FIT

STRUCTURAL PARAMETERS ESTIMATION METHOD

DESCRIPTION VALUE PANEL A: IN-MODEL (MOMENT, DATA,MODEL)

ζ Labor Supply Elasticity 6.9 γsA in regression (14) 0.45 0.51
E[srA1920 − srA1880|srA1880 > 0.8] -0.20 -0.20

λA Catch-Up in Agricult. 0.21 βw in regression (12) 0.25 0.16
βl in regression (13) -0.36 -0.04

gA Growth of Agricult. Frontier 0.07 Ag. Empl. Share 1900 0.39 0.35
Ag. Empl. Share 1920 0.26 0.25

λM Catch-Up in Non-agricult. 0.05 βsA in regression (14) -0.48 -0.57
gM Growth of Non-agricult. Frontier 0.09 GDP growth 1880-1900 1.43 1.50

GDP growth 1900-1920 2.04 2.05
ϵ Location Taste Heterogeneity 3.80 Avg. Migration Elasticity 2 2.03
η Engel Elasticity 0.93 Rel. price PM/PA 1900 0.94 1.01
ν PIGL preference parameter 0.12 Rel. price PM/PA 1920 0.89 0.87

PANEL B: OUT-OF-MODEL (STRATEGY)

κ Migration Cost Distance Elasticity 2.8 Gravity relationship of migration flows
θ Trade Costs Distance Elasticity 1.35 Gravity relationship of trade flows

PANEL C: EXOGENOUSLY-SET (SOURCE)

σ Elastictiy of Substitution Mfg Good 6 NA
ρ Amenity Congestion Elasticity 0.15 Allen and Donaldson (2020)
α Land Share in Production Function 0.4 Valentinyi and Herrendorf (2008)
ϕ Asy. Exp. Share on Agricult. Goods 0.01 NA

Notes: The table contains the values for all structural parameters and targeted moments of our model. The eight parameters in the upper
panel are estimated within the model, targeting the 11 moments on the right. The two distance elasticities are estimated from gravity
equations outside of the model. The remaining four parameters are set exogenously.

Other Parameters As is common in the literature, we parameterize trade costs as
power functions of distance so that trade costs in both sectors are τrr′ = d−θ

rr′ . For the
elasticity of trade flows to distance, (1 − σ)θ, Allen and Donaldson (2020) report an
estimate of −1.35.13 We take the remaining parameters from various sources in the
literature. Most related papers assume an elasticity of substitution σ between 3 and
8; we set σ = 6. For the agricultural land share, we follow Valentinyi and Herrendorf
(2008) and set α to 0.4. We also borrow the congestion elasticity of ρ = 0.15 from Allen
and Donaldson (2020), which is estimated using the same time period and Census data
used in our study.

3.3 Estimates and Model Fit

Table 3 presents our parameter estimates and their associated moments in the calibrated
model and the data. We differentiate parameters estimated within the model (Panel
A), parameters estimated outside the model (Panel B), and parameters that are set
exogenously (Panel C).

Overall, our model is able to successfully capture the most important empirical features
of spatial structural change in the US between 1880 and 1920. First, the calibrated
model produces the time-series patterns of the three aggregate “macro” moments: it
successfully captures the large decline in agricultural employment, the increase in GDP

13Monte et al. (2018) find a similar elasticity of −1.29. Disdier and Head (2008) show this elasticity is roughly constant in international
trade data in the 20th century.
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FIGURE 3: RURAL CONVERGENCE – MODEL AND DATA
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Notes: The figure displays the correlation of wage growth (left panel) and industrialization (right panel) with the agricultural employment
share. We show the data in lighter-shaded colors and model output in darker shades.

per capita, and the small increase in the relative price of agricultural goods between
1880 and 1920. These time-series moments are mostly informed by the rates of aggregate
productivity growth and preference parameters. We estimate that the productivity
frontier in non-agriculture (ZMt) grew at a rate of 0.09, and the frontier in agriculture
(ZAt) grew at a rate of 0.07 over a 20-year period. The estimates of the preference
parameters imply an important role of the demand-side non-homotheticities: we find
an Engel elasticity η of 0.93 and ν = 0.12, which implies agricultural value added is a
necessity.14

Second, and most importantly, the calibrated model matches the patterns of rural
convergence documented in Section 1. The cross-sectional estimates of the parameters
βw, βsA, and γsA from the two regressions in equations (12) and (14) are similar in the
model and the data. In Figure 3, we replicate the non-linear relationships in both the
data (grey) and our model (red and blue, respectively). Our model reproduces the rural
bias of wage growth (left panel) and the U-shape of industrialization (right panel) very
well.

To fit these patterns of rural convergence, our estimates imply an important role for
catch-up growth. Recall local productivity growth depends both on a region’s distance
to the frontier (i.e., Zs1880/Zrs1880) and the catch-up parameters λA and λM. Our es-
timates of λA = 0.21 and λM = 0.05 indicate significant catch-up growth and spatial
convergence between 1880 and 1920. Moreover, because we estimate sectoral produc-
tivity in 1880 to be negatively correlated with the agricultural employment share, rural
labor markets were the main beneficiaries of such catch-up growth.

14In Section B.2.4 in the Appendix, we compare this estimate from time-series data with cross-sectional estimates.
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FIGURE 4: RURAL CATCH-UP GROWTH
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Notes: The figure displays the correlation of the estimated rate of annual local productivity growth between 1880 and 1920, that is,
1
40 ln (Zr1920/Zr1880) and 1

40 ln (Ar1920/Ar1880), with the agricultural employment share in 1880.

In Figure 4, we show the implied heterogeneity in productivity growth across regions.
In the four decades following 1880, rural labor markets experienced a growth premium
of around two percentage points. The similarity in productivity growth in both sectors
reflects the combination of two aspects of our theory. First, there is less regional
dispersion in agricultural productivity, reducing the opportunities for productivity
catch-up. Second, our structural estimation showed λA > λM; that is, the process of
catch-up is faster in agriculture (which, in turn, might be why agricultural productivity
in 1880 is less dispersed). In terms of their regional growth implications, these two
forces roughly balance out.

In Figure 5, we turn to the implications for spatial mobility. In the left panel, we
show the cross-sectional relationship between local employment growth and initial
agricultural specialization. The empirical relationship is non-monotone: employment
growth is faster in locations with very low and locations with very high agricultural
employment shares. Our calibrated model captures this qualitative relationship and
reproduces the U-shape of employment growth in the data. However, we overestimate
employment growth for commuting zones in the intermediate range of agricultural
employment shares.

The positive relationship between agricultural employment shares and employment
growth among regions with high agricultural employment shares comes as no surprise,
because our model replicates the faster wage growth in agricultural locations and
generates an empirically reasonable migration elasticity of two. The negative correlation
between agricultural employment shares and employment growth among regions
with high agricultural employment shares may be more surprising. One reason our
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FIGURE 5: LOCAL EMPLOYMENT GROWTH
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(B) SPATIAL LABOR SUPPLY
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Notes: In the left panel, we show the relationship between employment growth and the agricultural employment share. We show the data
in grey and our model in orange. The size of the markers reflects the relative size of different commuting zones. The solid lines show the
best non-linear fit. In the right panel, we display the correlation between wage growth and employment growth in the model.

calibrated model replicates the U-shape is the exogenous component of population
growth nrt.15 However, even in the absence of this exogenous population-growth
component, the model can generate employment growth in locations with low relative
wage growth: if regions with low agricultural employment shares purchase agricultural
goods from regions that benefit from catch-up growth, real wages can rise and stimulate
local employment growth.

To see this effect, consider the right panel of Figure 5, which, for the data generated
by our model, shows a positive correlation between wage growth and employment
growth. However, the relationship is noisy because goods prices change at different
rates, due to trade costs. In addition, the current employment distribution matters
directly for future employment growth, because of moving costs.

4. THE DRIVERS OF RURAL CONVERGENCE

With the calibrated model in hand, we now quantify the role of the exposure versus
the incidence channel in generating the observed patterns of rural convergence. We
also estimate the relative importance of physical productivity growth versus changes
in demand and employment density. Finally, we provide a set of concrete empirical
examples of how rural locations caught up with the technological frontier.

4.1 The Importance of Catch-Up Growth

Our structural estimation showed rural labor markets experienced a productivity
growth premium of about two percentage points in each sector (cf. Figure 4). To

15We show in the Appendix that the exogenous component of population growth induces a U-shape; see Figure A.3.
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TABLE 4: THE MACRO CALIBRATION

TECHNOLOGY PARAMETERS MACRO MOMENTS

Agri. Non-Agri. Agri. Emp. Share GDP pc PM/PA

Calibration gA λA gM λM 1900 1920 1900 1920 1900 1920

No-Catch-up 0.41 0 0.34 0 0.34 0.24 1.41 2.03 0.98 0.88
Baseline 0.07 0.21 0.08 0.05 0.34 0.25 1.5 2.05 1.01 0.87

Notes: The table reports the technology parameters and the macro moments for the baseline model and the ”macro-calibration.” All other
parameters are the same in both calibrations and reported in Table 3.

understand their quantitative importance, we now shut down these differences in the
incidence of technological change. In this counterfactual, the spatial heterogeneity of
wage growth and industrialization therefore result from differences in exposure and
differential changes in non-agricultural demand and employment densities.

Specifically, we assume the productivity distribution is stationary, that is, λA = λM = 0,
and re-estimate the growth rates of the technological frontiers, gA and gM, to match
the growth of aggregate income per capita and the change in relative prices since
1880, keeping all other parameters the same. In the resulting counterfactual economy,
local labor markets are spatially segmented and differentially exposed to sectoral
reallocation, but the rate of technological progress is the same in all regions. We refer to
this parameterization as our model’s “no catch-up” calibration.

We report the resulting parameters of the productivity process (columns 1 - 4) and the
implied macro moments (columns 5 - 10) in Table 4. All parameters except gs and λs are
held fixed. Note that the location fundamentals, that is, initial productivity, the land en-
dowment, and local amenities in 1880, are exactly the same in both calibrations, because
they are estimated from static equilibrium conditions and are therefore independent of
gs and λs.

Table 4 shows the overall rate of frontier productivity growth is substantially faster in
the macro calibration to compensate for the absence of catch-up growth. In terms of the
macro moments, however, both calibrations are almost indistinguishable and replicate
the time-series patterns of the structural transformation equally well. Note in particular
that the “no catch-up” economy still experiences the structural transformation: the
decline in the agricultural employment share is very similar to our baseline calibration
and hence the data.

In contrast to these aggregate patterns, however, Figure 6 shows the “no catch-up”
calibration has strikingly counterfactual predictions for the process of rural convergence.
The left panel shows catch-up growth is essential to rationalize the empirically observed
features of rural wage growth, both quantitatively and qualitatively. In the absence of
productivity catch-up, growth would have been urban biased, and rural labor markets
would have fallen even further behind their urban counterparts.
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FIGURE 6: THE ROLE OF RURAL PRODUCTIVITY CATCH-UP
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Notes: In the left (right) panel, we show local wage growth (local industrialization) as a function of the initial agricultural employment
share. We depict the baseline calibration in grey and the macro calibration with no catch-up in red and blue, respectively. The size of the
markers reflects the relative size of different commuting zones.

This pattern resembles the theoretical results in equation (11), which showed analyti-
cally that falling agricultural employment would lead to urban-biased growth, albeit
for the special case of no trade costs and no migration. Quantitatively, Figure 6 shows
the exposure channel leads to an economically meaningful urban bias of the structural
transformation: in the absence of catch-up growth, urban locations would have experi-
enced roughly 15% faster wage growth than rural locations. Hence, catch-up growth
not only allowed rural America to close the gap in living standards but saved it from
falling further behind.

The right panel summarizes the implications for local industrialization. In contrast
to the spatial bias of wage growth, regional differences in exposure go a long way
toward explaining the spatial heterogeneity in industrialization: for a large number
of regions, the relationship between initial agricultural specialization and subsequent
industrialization is quite similar to our baseline calibration. The main difference arises
for the very rural labor markets whose agricultural employment share exceeds 75%.
Both in the data and in our model, these markets experience less industrialization -
the U-shape. Without catch-up growth, the model fails to generate the full U-shape,
highlighting the importance of the interaction of differences in exposure with catch-
up growth in generating the patterns of spatial structural change we documented in
Section 1.

The quantitative importance of the exposure channel has important consequences for
our understanding of spatial growth. First, it suggests technological catch-up forces
must have been substantial, because they not only generated wage convergence but
also had to overcome the secular urban bias of the exposure channel. Estimates of the
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FIGURE 7: THE MECHANISMS OF SPATIAL STRUCTURAL CHANGE
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Notes: The figure reports the decomposition of local wage growth, d lnwrt, and local industrialization, dsrA, (see Proposition 2) into
non-agricultural demand (ϕr(1/σ)d lnDrt), local productivity growth (ϕr((σ − 1)σ)d ln ZrMt and (1 − ϕr)d ln ZrAt), and changes in local
employment density (−ϕrαd lnℓrt). We define urban (rural) locations as regions in the lower (upper) quartile of the distribution of
agricultural employment share in 1880 and intermediate locations in the interquartile range. We refer to all commuting zones in the
interquartile range as ”intermediate.”

strength of technological catch-up that do not explicitly account for exposure difference
are therefore bound to underestimate the strength of technological convergence. Second,
it shows wage convergence and industrialization do not necessarily go hand in hand.
In the absence of catch-up growth, wage growth in rural America would have been
slower but industrialization faster.

4.2 The Sources of Rural Convergence

The previous section focused on the separate roles of exposure versus incidence. Now,
we decompose effective productivity growth in each sector into the distinct roles of
technological catch-up and the forces of demand and employment density and study
their spatial impact.

Propositions 1 and 2 highlight that local wage growth and industrialization are fully
determined from four factors: sectoral productivity growth (d ln ZrAt and d ln ZrMt),
demand growth (d lnDrt), and changes in employment density (d lnℓrt). In Figure 7,
we implement the formal decomposition in Proposition 2 in our calibrated model.16

Specifically, for each commuting zone, we compute the impact of each of the four
components multiplied by their respective exposure term, separately for local wage
growth and local industrialization. We then aggregate these results among urban,
intermediate, and rural locations, which we define as all regions below, within, and
above the interquartile range of agricultural employment shares in 1880.

16Proposition 2 relies on a first-order approximation. In Section B.2.5 in the Appendix, we compare these predictions with the full
non-linear solution in our model and show they are very close.
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The left panel of Figure 7 presents the decomposition of local wage growth. The white
bars represent total wage growth in each group of commuting zones, and thus exhibit
the previously documented pattern of rural-biased wage growth. The remaining bars
show regions differed substantially in why their wages grew.

In rural labor markets, agricultural productivity growth, shown in blue, was the domi-
nant factor. By contrast, industrial productivity growth, shown in red, played a much
smaller role. Recall this within-region discrepancy does not reflect that agricultural
productivity grew faster. Figure 4 showed that productivity growth was actually quite
similar in both sectors. The difference rather reflects the regional exposure: because
rural locations only have a small share of their workforce outside of agriculture, the
non-agricultural exposure elasticity, ϕ (srA), is small and wage growth is mostly driven
by agricultural productivity growth. This also explains why rising non-agriculture de-
mand, (Drt), shown in grey, only had a small effect on wages in rural America. Finally,
local employment growth, shown in green, reduced wage growth in rural locations,
whose sectoral structure exposes them to decreasing returns in the agricultural sector.

These patterns differ dramatically in urban areas. Revenue productivity growth in
the non-agricultural sector played a dominant role for wage growth, and almost half
of all wage growth stemmed from increased demand. Even though manufacturing
productivity growth was slower in urban areas (see Figure 4), their outsized exposure to
this sector implies the total impact is comparable to rural locations. By contrast, rising
agricultural productivity did not meaningfully affect wages in urban labor markets
given their small agricultural employment share. Finally, increased employment density
had a negligible effect, given that - in our model - non-agricultural production is subject
to constant returns to scale and accounts for the bulk of employment in urban labor
markets.

Overall, this decomposition highlights the pivotal nature of agricultural productivity
growth in spurring wage growth in rural regions. It also highlights the importance of
exposure versus incidence. The wage impact of non-agricultural productivity growth
is roughly balanced across regions, because exposure and incidence are inversely
correlated: productivity growth is faster in rural regions where exposure is lower. By
contrast, rural regions are both more exposed to and benefit from faster agricultural
productivity growth, making it a powerful source of rural wage convergence.

The right panel of Figure 7 displays the same decomposition for local industrializa-
tion. Rural locations industrialized because of rising manufacturing productivity,
rising non-agricultural demand, and increasing employment density. Quantitatively,
non-agricultural productivity growth played the most important role. By contrast,
productivity growth in the agricultural sector was a strong counteracting force that
kept workers in agriculture, especially in the most rural labor markets. Intermediate lo-
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cations saw a slightly faster decline in agricultural employment shares (the “U-shape”),
primarily due to a less pronounced increase in agricultural productivity. Finally, in
urban centers, rising demand, nonagricultural productivity growth, and rising employ-
ment density were equally important contributors to the modest decline in agricultural
employment they experienced between 1880 and 1920.

These findings emphasize the fundamentally different roles of agricultural and non-
agricultural productivity growth. Agricultural productivity growth was essential
for the convergence of wages across space but, all else equal, would have led to
divergence in agricultural employment shares. Non-agricultural productivity growth,
on the other hand, was the main engine behind the industrialization of the rural
hinterland and the convergence in agricultural employment shares we observed in
the data. Furthermore, Figure 7 highlights the interaction between agricultural and
non-agricultural productivity growth that gives rise to the U-shape in industrialization.

4.3 Direct Evidence on Rural Catch-Up

The analysis above established the key role of faster productivity growth in rural
America. Our theory and quantitative analysis summarizes all factors leading to
catch-up growth in the reduced-form process of productivity convergence. We view
this parameterization as a modeling device for various technological and institutional
developments in the US between 1880 and 1920 that benefited rural locations.

In this section, we complement these model-based estimates with direct empirical
evidence for the presence of faster rural productivity growth. In Table 5, we provide
evidence for such developments from multiple data sources. Specifically, we run a set
of bivariate regressions where we regress the growth of different outcomes yrt between
1880 and 1920 against the agricultural employment share in 1880:

yr1920 − yr1880 = δ + β srAt + νrt.

We differentiate between outcomes we expect to be correlated with general productivity
growth and those we expect are correlated with sector-specific productivity growth.

In columns 1-3, we report three examples of sector-neutral developments that benefited
rural locations. In column 1, we show rural locations experienced faster financial devel-
opment, as measured by the growth of the number of banks per capita. In the second
column, we provide evidence for the pronounced catch-up in educational attainment,
proxied by the share of children attending school. We find the school attendance rate in-
creased much faster in agriculturally specialized labor markets between 1880 and 1920.
Finally, in the third column, we document that rural locations experienced faster market
integration. More specifically, there is a positive relationship between agricultural em-
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ployment shares in 1880 and changes in the inverse of the transportation-cost-weighted
distance to all other commuting zones, using transportation cost estimates from Donald-
son and Hornbeck (2016). Hornbeck and Rotemberg (2021) show directly that improved
railroad access led to local productivity growth in rural locations in the US.

In the remaining four columns, we present additional evidence for sector-specific
factors. In particular, rural locations saw faster growth in the capital stock in both
sectors (columns 4 and 6) and experienced a faster increase in scale: the growth in
both average farm and firm size is positively correlated with the initial agricultural
employment share (columns 5 and 7).17

We view these results as an empirical description of the general transformation of rural
labor markets between 1880 and 1920. Rising educational attainment, changes in the
scale and capital intensity of production, improved transport systems, and financial
deepening are often seen as markers of economic development across countries. Table 5
shows the same patterns were also present across local labor markets in the US during
the first phase of the structural transformation.

Table 5 shows a diverse set of institutional developments (e.g., the spread of schooling),
infrastructure measures (e.g., the railway system), and capital deepening (e.g., tractors
in agriculture) all appear to have systematically benefited more agricultural regions
between 1880 and 1920. The diversity of these factors makes modelling them all
individually difficult. Hence, we chose to summarize them in the two productivity
scalars ZrA and ZrM. Although performing a more structural decomposition of local
productivity growth into its different components would be interesting, our approach
allows us to directly infer the productivity process required to explain rural convergence
within a model of structural change.

The main takeaway from this section is that between 1880 and 1920, many factors came
together to benefit rural regions and help them counteract the adverse effects of their
exposure to the US economy’s shift away from agriculture.

CONCLUSION

Economic growth systematically reallocates resources out of the agricultural sector.
Such structural change has adverse effects on regions specialized in agriculture and
depresses their wage growth. At the same time, agricultural regions are usually poor
and hence are the natural beneficiaries of the usual forces of technological catch-up. In
this paper, we provided a novel framework of spatial structural change that allows us to
distinguish between the regional impacts of sectoral reallocation and the consequences
of technological convergence. We found catch-up growth played a crucial role; without

17Desmet and Rossi-Hansberg (2009) provide direct estimates of manufacturing TFP convergence across regions in the US between 1900
and 1920; their estimates are of a similar magnitude (cf. Figure 6 in their paper).
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TABLE 5: DRIVERS OF RURAL CATCH-UP

GROWTH IN...

GENERAL SECTOR-SPECIFIC FACTORS

School Agri. Non-agri.
Banks Atten- Market Machi- Farm Machi- Plant

pc dance Access nery Size nery Size

srA1880 0.118∗∗∗ 0.007∗∗∗ 0.005∗∗∗ 0.032∗∗∗ 0.012∗∗∗ 0.039∗∗∗ 0.032∗∗∗

(0.006) (0.001) (0.000) (0.002) (0.003) (0.009) (0.007)

Obs. 495 495 495 495 495 495 495
R2 0.725 0.331 0.424 0.359 0.107 0.090 0.242

Notes: The dependent variables are the growth rate in the number of banks per capita from Jaremski and Fishback (2018) (column 1), the
change in the share of children attending school from the Decennial Census (column 2), the inverse transportation cost weighted distance to
all other commuting zones using transportation cost estimates from Donaldson and Hornbeck (2016) (column 3), and the growth rates of
the sectoral capital stocks and average employment per farm/firm from the Census of Manufacturing (columns 6 and 7) and the Census of
Agriculture (columns 4 and 5). All regressions are employment weighted.

it, the structural transformation would have led to decisively urban-biased wage growth
and regional divergence in the US economy between 1880 and 1920.

Our paper suggests several important directions for future research. First, a more
systematic comparison of the first and second phases of the structural transformation
could produce a better understanding of the striking differences between these episodes.
In contrast to the regional convergence during the transition away from agriculture,
spatial inequality has increased during the ongoing transition away from manufacturing
(see, e.g., Austin, Glaeser, and Summers (2018) and Chatterjee and Giannone (2021)).
Our theory suggests these differences might reflect a strong exposure channel against
the backdrop of weakened catch-up forces. Today, banks and high schools have long
reached most areas of the US, the railroad network and interstate highway system are
complete, and the human capital that has replaced physical capital may be harder to
move into remote regions; in short, ”old-fashioned” catch-up growth may have run out
of steam.

Second, comparing the historical US experience with that of today’s developing coun-
tries that are currently going through their first structural transformation would be
interesting. Are similar convergence forces at play, or was the US case exceptional?
Such a comparative analysis could provide new insight into the nature of economic
development and help distinguish between different theories of economic growth.

Finally, although we did not explicitly model capital and its adoption across space,
quantitatively assessing the role of spatial capital deepening versus productivity growth
would be interesting. The tabulated data from Manson et al. (2017) provide an avenue
to observe certain types of capital empirically, and recent theoretical advances show
how to incorporate capital into spatial models; see Kleinman, Liu, and Redding (2021).

We hope our framework of spatial structural change will serve as a starting point to make
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these and other types of research possible.
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HERRENDORF, B., R. ROGERSON, AND Á. VALENTINYI (2013): “Two perspectives on
preferences and structural transformation,” American Economic Review, 103, 2752–89.

——— (2014): “Growth and structural transformation,” Handbook of Economic Growth, 2,
855–941.

HORNBECK, R. AND M. ROTEMBERG (2021): “Growth Off the Rails: Aggregate Produc-
tivity Growth in Distorted Economies,” .

36



JAREMSKI, M. AND P. V. FISHBACK (2018): “Did inequality in farm sizes lead to
suppression of banking and credit in the late nineteenth century?” The Journal of
Economic History, 78, 155–195.

KLEINMAN, B., E. LIU, AND S. J. REDDING (2021): “Dynamic spatial general equilib-
rium,” Tech. rep., National Bureau of Economic Research.

KONGSAMUT, P., S. REBELO, AND D. XIE (2001): “Beyond balanced growth,” The
Review of Economic Studies, 68, 869–882.

MANSON, S., J. SCHROEDER, D. VAN RIPER, AND S. RUGGLES (2017): “IPUMS national
historical geographic information system: Version 12.0,” Minneapolis: University of
Minnesota. 2017. http://doi.org/10.18128/D050.V12.0.

MICHAELS, G., F. RAUCH, AND S. J. REDDING (2012): “Urbanization and structural
transformation,” The Quarterly Journal of Economics, 127, 535–586.

MONTE, F., S. J. REDDING, AND E. ROSSI-HANSBERG (2018): “Commuting, migration,
and local employment elasticities,” American Economic Review, 108, 3855–90.

NAGY, D. K. (2023): “Hinterlands, City Formation and Growth: Evidence from the U.S.
Westward Expansion,” Princeton University, mimeograph.

NGAI, L. R. AND C. A. PISSARIDES (2007): “Structural change in a multisector model
of growth,” American Economic Review, 97, 429–443.

PELLEGRINA, H. S. AND S. SOTELO (2021): “Migration, Specialization, and Trade:
Evidence from Brazil’s March to the West,” Tech. rep., National Bureau of Economic
Research.

PETERS, M. (2022): “Market Size and Spatial Growth—Evidence From Germany’s
Post-War Population Expulsions,” Econometrica, 90, 2357–2396.

REDDING, S. J. AND E. ROSSI-HANSBERG (2017): “Quantitative spatial economics,”
Annual Review of Economics, 9, 21–58.

REDDING, S. J. AND D. M. STURM (2008): “The costs of remoteness: Evidence from
German division and reunification,” American Economic Review, 98, 1766–97.

RUGGLES, S., K. GENADEK, R. GOEKEN, J. GROVER, AND M. SOBEK (2015): “Integrated
public use microdata series: Version 6.0,” Minneapolis: University of Minnesota.

——— (2017): “Integrated public use microdata series: Version 7.0,” Minneapolis: Uni-
versity of Minnesota. https://doi.org/10.18128/D010.V7.0.

SILVA, J. S. AND S. TENREYRO (2006): “The log of gravity,” The Review of Economics and
Statistics, 88, 641–658.

SMITH, A. (2008): “Indirect Inference,” The New Palgrave Dictionary of Economics, 2nd
Edition (forthcoming).

SOTELO, S. (2020): “Domestic trade frictions and agriculture,” Journal of Political Econ-
omy, 128, 2690–2738.

37



TOLBERT, C. M. AND M. SIZER (1996): “US commuting zones and labor market areas:
A 1990 update,” .
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FOR ONLINE PUBLICATION:

APPENDIX

A. ADDITIONAL THEORETICAL RESULTS AND

DERIVATIONS

The theory appendix contains additional proofs and derivations omitted in the body of
the paper.

A.1 The Equilibrium System

The equilibrium is characterized by the following system of equations:

1. Spatial labor supply: The spatial labor supply function is given in the law of
motion for the local population in equation (A.1) given by

(A.1) Ljt = ∑
r

mrjtLY
rt = ∑

r
mrjtnrt−1Lrt−1,

where mrjt is given in equation (4). Together with the expression for expected
utility Vrt given in (6), equation A.1 determines the spatial supply function as a
function of local wages wrt and local prices {PrAt, PrMt}r.

2. Labor market clearing in agriculture: the agricultural labor market clears when
labor demand (LHS) equals labor supply (RHS)

(A.2) w− 1
α

rAtZ
1
α
rAtTr = Γζ Lrt

(
wrAt

wrt

)ζ−1

.

Equation A.2 determines the scaled skill prices in the agricultural sector, wrA =
1

1−α w̃rA, as

(A.3) wζ−1+ 1
α

rAt = wζ−1
rt Z

1
α
rAt

Tr

Γζ Lrt

Market clearing for non-agricultural products: For non-agricultural products,
sales of firm ω located in region r are given by

prt (ω)yrt (ω) = ∑
j

(
τrjM prrt (ω)

PjMt

)1−σ

ϑjMtΓζ Ljtwjt.

The mass of non-agricultural firms that enter a location, Nrt, is also equal to
the number of varieties produced in region r. Aggregating over the measure of
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varieties, Nrt yields:

σ

σ − 1
wrMtHrPt = Nrt

(
σ

σ − 1

)1−σ

w1−σ
rMt Zσ−1

rt ∑
j

(
τrjM

PjMt

)1−σ

ϑjMtΓζ Ljtwjt,

where we used that total payments to production workers are a constant fraction,
σ−1

σ , of total sales. We denote by HrPt and HrEt the total mass of non-agricultural
workers engaged in production and entry, respectively, so that HrPt + HrEt =

HrMt. The mass of local varieties, Nrt, itself is determined from free entry as
Nrt =

1
fE

HrEt =
1

σ fF
HrMt and HrPt =

σ−1
σ HrMt. Hence,

wrMt =
1

σ fF

(
σ

σ − 1

)1−σ

w1−σ
rMt Zσ−1

rMt ∑
j

(
τrjM

PjMt

)1−σ

ϑjMtΓζ Ljtwjt,

which implies that

(A.4) wσ
rMt =

1
σ fF

(
σ

σ − 1

)1−σ

Zσ−1
rMt Drt,

where Drt = ∑j τ1−σ
rjM Pσ−1

jMt
(
1 − ϑjAt

)
Γζ Ljtwjt was defined in equation (7) and the

non-agricultural spending share ϑrMt is given in equation A.10.

These equations fully determine the equilibrium. In particular, upon substituting
for ϑrMt and Vrt , equations (A.1), (A.2), and (A.4) are 3 × R equations in the 3 × R
unknowns {wrAt,wrMt, Lrt}.

A.2 Additional Derivations

In this section, we present additional derivations omitted from the body of the paper.

A.2.1 Labor Supply

We denote total payments per efficiency unit of labor in region r and sector s by wrs. In
non-agriculture, these payments reflect only the wage per efficiency unit. In agriculture,
they also include the payments to land which are redistributed to workers, so:

wrA ≡ w̃rA +
α

1 − α
w̃rA =

1
1 − α

w̃rA,

where w̃rA denotes the wage per efficiency unit in agriculture in region r.

Individual workers learn the amount of efficiency units of labor they can supply to
either sector once they arrive in a location. We denote the efficiency units individual i
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can supply to each sector by zi
A and zi

M. Individuals draw their efficiency units from a
sector-specific Fréchet distribution, P

(
zi

s ≤ z
)
= Fs (z) = e−z−ζ

, where ζ the dispersion
of efficiency units across workers in sector s.

Worker i then chooses their sector so as to maximize their labor income, yi
r =maxs

{
wrszi

s
}

.
A standard set of arguments implies the following analytical expressions for the key
objects of our theory.

1. Sectoral employment shares are

(A.5) srs =

(
wrs

wr

)ζ

where wr =

(
∑

s
wζ

rs

)1/ζ

.

2. The aggregate amounts of sectoral human capital are

Hrs = Γζ Lr

(
wrs

wr

)ζ−1

= Γζ Lrs
ζ−1

ζ
rs ,

where Γx ≡ Γ (1 − 1/x) and Γ denotes the Gamma function.

3. Total sectoral earnings are

wrsHrs = wrsΓζ Lr

(
wrs

wr

)ζ−1

= wrΓζ Lr

(
wrs

wr

)ζ

= wrΓζ Lrsrs.

4. The distribution of realized labor income, yi
r, inherits the Fréchet distribution of

the underlying efficiency units of labor and is given by

(A.6) Fr(y) ≡ P
(

yi
r ≤ y

)
= e−

(
∑s wζ

rs

)
y−ζ

= e−(y/wr)
−ζ

.

Hence, a worker’s expected income in region r prior to moving there is given
by E

[
yi

r
]
= Γζwr. Due to the law of large numbers this also corresponds to the

ex-post average income in location r, so that, Yr = wrΓζ Lr.

A.2.2 The PIGL Demand Function

Consider the indirect utility function given in equation (1). Roy’s Identity implies that
sectoral expenditure shares are given by the following formula:

(A.7) ϑs ≡ ϑs (y, PrA, PrM) = −
∂V(y,PrA,PrM)

∂ps
Prs

∂V(y,PrA,PrM)
∂y y

.
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We compute the numerator and denominator separately and then combine them. The
numerator can be written:

∂V (y, PrA, PrM)

∂PrA
PrA =

∂

∂PrA

[
1
η

(
y

Pϕ
rAP1−ϕ

rM

)η

− ν ln
(

PrA

PrM

)]
PrA

= −ϕ

(
y

Pϕ
rAP1−ϕ

rM

)η

− ν,

while the denominator has the following expression:

∂V (y, PrA, PrM)

∂y
y =

(
y

Pϕ
rAP1−ϕ

rM

)η

.

Combining the two previous derivatives using the expression in equation A.7 yields
the following expressions of the sectoral expenditure shares:

(A.8) ϑA = ϕ + ν

(
y

Pϕ
rAP1−ϕ

rM

)−η

ϑM = (1 − ϕ)− ν

(
e

Pϕ
rAP1−ϕ

rM

)−η

.

The Allen-Uzawa elasticity of substitution is given by

ϱ =

∂2e(PrA,PrM,V)
∂PrA∂PrM

e (PrA, PrM,V)

∂e(PrA,PrM,V)
∂PrA

∂e(PrA,PrM,V)
∂PrM

,

where e (PrA, PrM,V) is the expenditure function given by

(A.9) e (PrA, PrM,V) = (V + ν ln (PrA/PrM))1/η η1/ηPϕ
rAP1−ϕ

rM .

Using equation (A.9), one can show that

ϱ = 1 − η
(ϑA − ϕ) (ϑM − (1 − ϕ))

ϑAϑM
= 1 + η

(ϑA − ϕ)2

ϑA (1 − ϑA)
.

A.2.3 PIGL Aggregation

In this section we derive the aggregate demand system and the expression for special
welfare introduced in Section 2.3.

A - 4



Aggregate Demand

Let Fr (y) be the distribution of income derived in equation (A.6). Integrating over the
sectoral expenditure shares of individual workers in region r in equation A.8 yields an
expression for a region’s aggregate expenditure share:

ϑrs ≡ ϑrs (w̄r, PrA, PrM) =

∫
ϑA (y, PrA, PrM)ydFr (y)∫

ydFr (y)

= ϕ + ν

(
1

Pϕ
rAP1−ϕ

rM

)−η ∫
y1−ηdFr (y)∫

ydFr (y)
.

Given that Fr (y) = e−(y/wr)
−ζ

, we have that

P
(

y1−η < m
)
= P

(
y < m

1
1−η

)
= e

−

m
1

1−η

wr

−ζ

= e
−
(

m

w1−η
r

)− ζ
1−η

.

Hence, ∫
y1−ηdFr (y)∫

ydFr (y)
=

Γ ζ
1−η

w1−η
r

Γζwr
=

Γ ζ
1−η

Γζ
w−η

r ,

so that

ϑrA = ϕ + ν
Γ ζ

1−η

Γζ

(
wr

pϕ
rA p1−ϕ

rM

)−η

= ϕ + νRC

(
wr

pϕ
rA p1−ϕ

rM

)−η

,(A.10)

where we defined the composite parameter νRC ≡ ν
Γ ζ

1−η

Γζ
.

Indirect Utility

Using the indirect utility function in equation (1), we derive the following expression
for the, expected utility in region r:

E [V (y, PrA, PrM)] =
1
η

(
1

Pϕ
rAP1−ϕ

rM

)η ∫
yηdFr (y)− ν ln

(
PrA

PrM

)
.

Workers effectively draw their income from the Fréchet distribution in equation (A.6)
upon arriving in their region of choice. We use the properties of the Fréchet distribution
to show that yη itself is drawn from a Fréchet distribution with a shape parameter ζ/η
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and scale wη
r :

P (yη < m) = P
(

y < m
1
η

)
= e

−
(

m
1
η

wr

)−ζ

= e
−
(

m
wη

r

)− ζ
η

.

By implication,
∫

yηdFr (y) = Γ
(

1 − 1
ζ/η

)
wη

r = Γ ζ
η
wη

r ,so that

(A.11) E [V (y, PrA, PrM)] =
1
η

Γ ζ
η

(
wrt

Pϕ
rAP1−ϕ

rM

)η

− ν ln
(

PrA

PrM

)
.

This is the expression in equation (6).

A.3 Proofs of Propositions

In this section, we present the proofs of Propositions 1 and 2 which were omitted from
the body of the paper.

A.3.1 Proposition 1

First, rewrite equation (A.4) as follows

(A.12) wrMt =

(
1
fE

) 1
σ
(

1
σ

)
(σ − 1)

σ−1
σ Z

σ−1
σ

rMtD
1
σ
rt ≡ ZrMt,

Upon defining ZrAt ≡ ZrAt
(
Γζℓrt

)−α where ℓrt ≡ Lrt
Tr

is population density, equation
(A.3) reads

wζ−1+ 1
α

rAt = wζ−1
rt Z

1
α
rAt =

(
wζ

rAt + wζ
rMt

) ζ−1
ζ Z

1
α
rAt =

(
wζ

rAt +Z ζ
rMt

) ζ−1
ζ Z

1
α
rAt.

Rearranging terms yields

1 =

(
1 +

(
ZrMt

wrAt

)ζ
) ζ−1

ζ (ZrAt

wrAt

) 1
α

.

Using the definition of wr =
(

wζ
rM + wζ

rA

)1/ζ
, it follows that wrA =

(
wζ

r − wζ
rM

)1/ζ
=
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(
wζ

r −Z ζ
rM

)1/ζ
. Hence, wr is determined from


 ZrM(

wζ
r −Z ζ

rM

)1/ζ


ζ

+ 1


ζ−1

ζ  ZrA(
wζ

r −Z ζ
rM

)1/ζ


1
α

= 1

Rearranging terms yields

1 =

(
ZrM

wr

)ζ

+

(
ZrA

wr

) ζ
α(ζ−1)+1

,

which is the first result in Proposition 1.

To derive the second result in Proposition 1, note that sectoral employment shares
satisfy srAt/ (1 − srAt) = (wrAt/wrMt)

ζ . As a result, equation (A.3) can be written as

wrAt = s
− ζ−1

ζ α

rAt ZrAt, so that

srAt

1 − srAt
=

 s
− ζ−1

ζ α

rAt ZrAt

ZrMt


ζ

=

(
ZrAt

ZrMt

)ζ

s−(ζ−1)α
rAt .

Rearranging terms yields s1+(ζ−1)α
rAt
1−srAt

=
(

ZrAt
ZrMt

)ζ
.

A.3.2 Proposition 2

The wage exposure elasticity ϕ (srA) The first result in Proposition Proposition 1,
directly implies the following:

(A.13) d lnwrMt = d lnZrMt.

Taking the total derivative of the expression for the agricultural wage in Proposition
1yields:

(A.14) d lnwrAt =
(1 − srAt)γ

1 + (1 − srAt)γ
d lnZrMt +

1
1 + (1 − srAt)γ

d lnZrAt.
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Finally, we can take the total derivative for the expression for the average income in a
location in equation (A.5), and combine it with equations (A.13) and (A.14) to obtain:

d lnwrt = srAtd lnwrAt + (1 − srAt)d lnwrMt

=
srAt (1 − srAt)γ

1 + (1 − srAt)γ
d lnZrMt +

srAt

1 + (1 − srAt)γ
d lnZrAt + (1 − srAt)d lnZrMt

=
(1 + γ) (1 − srAt)

1 + (1 − srAt)γ
d lnZrMt +

srAt

1 + (1 − srAt)γ
d lnZrAt

≡ ϕ (srAt)d lnZrMt + (1 − ϕ (srAt))d lnZrAt,

where ϕ (srAt) =
(1+γ)(1−srAt)
1+(1−srAt)γ

.

The industrialization elasticity ψ (srA) To derive the change in srAt, we take the total
derivative of equation (A.5) and combined it with the expression for d lnwrt above to
obtain:

d ln srAt = ζ (d lnwrAt − d lnwrt) = ζ (1 − srAt) (d lnwrAt − d lnwrMt) .

Using the expressions in equations (A.14) and (A.13), this implies that

(A.15) d ln srAt =
(1 − srAt) ζ

1 + (1 − srAt)γ
(d lnZrAt − d lnZrMt) .

Finally, using that dsrAt = srAtd ln srAt,yields the expression in Proposition 2.

B. ADDITIONAL DATA DETAILS AND EXHIBITS

The material presented in this section complements the quantification section of the
main paper. It contains a detailed description of the data, additional figures and tables,
and details of our estimation procedure.

B.1 Description of Data Sources and Data Construction

The spatial unit of observation used throughout the paper is the “commuting zone”
defined by Tolbert and Sizer (1996). These were introduced into the economics literature
by Autor and Dorn (2013). We choose these units since they capture integrated labor
market areas within which migration frictions are unlikely to play a role. During the
period of our study, county boundaries were subject to substantial changes. To ensure
consistent treatment, we use the crosswalk described in Eckert et al. (2020b) to map
historical county boundaries to the time-invariant commuting zone delineations of
Tolbert and Sizer (1996).

Since data collection by the US Statistical Office only occurred systematically in states
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that formed part of the Union, we drop data from states that joined the Union after
1870. We chose a cutoff a decade before the start of our period of analysis since the
collection of the decennial census took considerable time, so data in the 1880 Census
may be incomplete for States that joined the Union less than ten years earlier. As a
result, we exclude the following states from our sample and drop them from all our
data sets (year of eventual accession to the Union in parentheses): Colorado (1876),
North Dakota (1889), South Dakota (1889), Montana (1889), Washington (1889), Idaho
(1890), Wyoming (1890), Utah (1896), Oklahoma (1907), New Mexico (1912), Arizona
(1912), Alaska (1959), Hawaii (1959). Figure A.1 shows agricultural employment shares
in 1880 for each commuting zone in our final sample.

B.1.1 Full Count Decennial Census, 1880-1920

Source and Description We obtained the full count decennial census micro-data files
for the years 1880, 1900, and 1920 from the IPUMS database (see Ruggles, Genadek,
Goeken, Grover, and Sobek (2017)). We selected the following variables: state, county,
age , school attendance (“school”), years since immigration (“yrimmig”), state of birth
(if applicable), and industry of employment using 1950 Census codes (ind1950),. We
use the county and state identifiers included in the data to assign each observation to a
commuting zone.

Sample Selection, Processing, and Use In the data, we define different groups of
observations used in various parts of the paper. We define “workers“ as observations
with an industry identifier and age between 20 and 60 years. We define “agricultural
workers“ as workers who work in Agriculture, Forestry, and Fishing, corresponding to
ind1950 codes 105, 116, and 126. For each commuting zone, dividing the total agricul-
tural worker count by the total number of workers yields the agricultural employment
share we use throughout the paper. In Figure A.1, we depict a map of the agricultural
employment share in 1880.

“Immigrant workers“ are workers who immigrated within the last 20 years. “Old
workers“ are workers between the ages of 40 and 60. “Young workers“ are workers
between the ages of 20 and 40. We use these groups of observations to inform the
location- and decade-specific labor force growth rate nrt.

“Adolescents“ as observations with age between 6 and 18 years who do not work, are
white, and are male. We define “adolescents in school“ as adolescents who are currently
attending school. We use these two groups of workers to compute a measure of the rate
of school attendance for each commuting zone.

For each state, we also compute the number of workers born in any state. We use the
resulting “lifetime state-to-state migration matrix” to estimate the elasticity of migration

A - 9



FIGURE A.1: AGRICULTURAL EMPLOYMENT SHARES ACROSS COMMUTING ZONES,
1880

0.8 − 0.9
0.8-1
0.6-0.8
0.4-0.6
0.2-0.4
Not in Sample

Notes: The map shows all commuting zones in the United States. The colors reflects the agricultural employment share bin into which
individual commuting zones fall. Darker shades correspond to higher agticultural employment shares. Grey commuting zones are not in
our sample since their corresponding state was not part of the Union of US states by 1870.

flows to distance.

B.1.2 Census of Manufacturing

Source and Description We obtained county-level tabulations of the Census of Manu-
facturing data for the years 1880, 1900, and 1920 from the NHGIS database (see Manson
et al. (2017)). We selected the following variables: total manufacturing payroll, total
manufacturing employment, number of manufacturing establishments, and capital
(real and personal) invested in iron and steel manufacturing establishments.

Sample Selection, Processing, and Use We drop all counties for which manufactur-
ing payroll or employment is zero or missing. We then compute average manufacturing
wages in each county by dividing total manufacturing payroll by the number of man-
ufacturing workers. Throughout the paper, we refer to this ratio simply as “average
wage” or “earnings ”.We compute commuting zone-level average wages by taking the
payroll-weighted average across county-level average wages within each commuting
zone. In our model average wages are the same in both sectors, so that the average
manufacturing wage in the data correspond to the average commuting zone wage in
the model, wrt. We compute average establishment size for each county by dividing
total manufacturing employment by the number of manufacturing establishments.
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B.1.3 Census of Agriculture

Source and Description We obtained county-level tabulations of the Census of Agri-
culture for the years 1880, 1900, and 1920 from the NHGIS database (see Manson et al.
(2017)). We selected the following variables: average land value per acre, acres of
improved farm land, total number of farms, and total value of farm implements and
machinery.

Sample Selection, Processing, and Use We drop all counties for which average land
value per acre is zero or missing. We compute commuting zone-level average land
values per acre by taking the area-weighted average across the land values in all the
counties contained in a given commuting zone. We interpret these data in 1880 as
land rents in the model and use them to identify the supply of agricultural land in
each commuting zone in 1880, Tr. We compute average farm size for each county by
dividing the total number of improved acres in farms by the total numbers of farms.

B.1.4 Linked Census Files

Source and Description Economists have written algorithms to match workers across
sequential Decennial Census waves based on their names and a variety of other charac-
teristics. IPUMS itself provides a matched file that lists individuals that appear both in
1880 and 1900 (see Ruggles et al. (2017)). In addition, Abramitzky, Boustan, Eriksson,
Rashid, and Pérez (2022) provide linked files for various pairs of years. We use the
1880-1900 linked file from IPUMS and from Abramitzky et al. (2022).

Sample Selection, Processing, and Use Both samples only include men, since women’s
surnames changed frequently making it difficult to match them over time. We only
keep observations who are workers according to our definition of workers in the full
count Census files.

We use the linked data to compute the share of workers moving from commuting zone
r to commuting zone r′ between 1880 and 1900. We use the resulting “commuting-zone-
to-commuting-zone-migration matrix” to estimate the elasticity of migration flows to
distance.

B.1.5 Historical Statistics of the United States

Source and Description For aggregate time series data, we use the canonical “Histor-
ical Statistics of the United States” (see Carter et al. (2006)). We use the series on real
GDP and the series for the price of farm goods and the prices of all commodities other
than farm goods.
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Sample Selection, Processing, and Use Moments from both the GDP and the price
series serve as targets in our estimation. We interpret the price series for farm goods
as the price series for agricultural prices in our model, and the series on non-farm
commodities as that of manufacturing goods. We target the growth rate of real GDP
and relative prices between 1880-1900 and 1900-1920 in our estimation.

B.1.6 Historical Bank Branches

Source and Description We obtained data on the number of private banks for each
US county for 1880 and 1910 from Jaremski and Fishback (2018).18

Sample Selection, Processing, and Use We merge these data with our Census data
on the number of workers in each commuting zone to compute the change in the log
of the number of bank branches per worker in each commuting zone. Since there are
no branches in many commuting zones in 1880, we add a 1 to each observation in the
bank branch data. Our results are robust to simply dropping observations with zero
branches in 1880 instead.

B.2 Details on Estimation Moments and Methods

B.2.1 Local Employment Growth

Our model accounts for growth in the local labor force through interregional migration.
Empirically, other factors affecting the size of the local labor force are births, immigra-
tion, and deaths, all of which likely differ across commuting zones.These aspects of
labor force entry and exit also generate aggregate employment growth. In this section,
we show which determinants of local labor force growth vary substantially across
commuting zones and how we account for them in our analysis.

Figure A.2 shows proxies for the three most important sources of local employment
growth: births, immigration, and deaths. The rightmost panel shows the number
of children per adult (“birth rates”). We measure local “birth rates” as the fraction
of children between 0 and 20 relative to the number of working adults aged 20-60.
Rural locations have substantially higher birth rates and hence experience faster innate
employment growth.

The middle panel shows the the correlation of the share of immigrants in the local
workforce and initial agricultural employment shares. We measure immigrants as the
share of workers that immigrated in the last 20 years from a foreign country. Immigrants
predominantly settled in urban locations, and thus raised the employment of such
non-agricultural locations.

18We thank Matt Jaremski for his work in compiling these data and his generosity in sharing them with us.
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FIGURE A.2: IMMIGRATION, FERTILITY, AND AGE STRUCTURE ACROSS SPACE
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Notes: The left panel shows a proxy for the local birth rate, i.e., the share of children between 0 and 20 relative to the number of working
adults aged 20-60, as a function of the initial agricultural employment share. The middle panel shows the share of immigrants in the
local work force as function of the initial agricultural employment share. The right panel shows the fraction of young workers among the
total workforce in each commuting zone. Total workers are defined as all individuals aged 20-60 that have an industry identifier. Young
workers are defined as all individuals aged 20-40 that have an industry identifier. The underlying data source for all three panels are the US
Decennial Census files for 1880 and 1900. The size of the symbols is proportional to a regions total employment. The graph shows the fit
line of a local polynomial regression.

The rightmost panel of Figure A.2 provides evidence that - compared to births and
immigration - labor force exit rates do not vary systematically across space. If death
and retirement rates varied substantially across regions, the fraction of young workers
(20-40 years old) in the total workforce should vary a lot, too. However, the figure
shows that the fraction of young workers is essentially uncorrelated with the local
agricultural employment share. We thus assume that the rate of labor force exit is
constant across locations.

We now show how we use these data to estimate the exogenous component of local
employment growth nrt in each region. To do so, recall that we denote by LY

rt the
number of workers in a location at the beginning of period t, i.e., before making their
moving decisions. Lrt is the number of workers working in region r during period t,
i.e., the mass of workers that chose to move (or remain in) location r during period t.
The local rate of exogenous labor force growth, nrt, is thus defined by LY

rt+1 = nrtLrt. To
calibrate nrt, note that the following accounting identity describes the law of motion of
the total labor force in region r at the beginning of period t:

LY
rt = Lrt−1 − Exitrt−1,t + Entryrt−1,t = Lrt−1

(
1 − Exitrt−1,t

Lrt−1
+

Entryrt−1,t

Lrt−1

)
,

where Exitrt−1,t is the number of workers exiting the labor force between periods t − 1
and t but do not leave the location to work elsewhere. Similarly, Entryrt−1,t is the
number of workers entering the labor force between periods t − 1 and t that did not
immigrate from another domestic region between t − 1 and t.

Given our assumption of a constant labor force exit rate across regions, we set the exit
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rate equal to a common constant, δ, so that:

Exitrt−1,t

Lrt−1
= δ.

The gross rate of local labor force growth prior to workers making their migration
decisions is thus given by

nrt−1 =
LY

rt
Lrt−1

= 1 − δ +
Entryrt−1,t

Lrt−1
.

Let Crt denote the number of children in r at time t − 1 and Irt denote the number of
working immigrants in region r that arrived between t − 1 and t. Let ι be the fraction of
children that join the labor force. Since we assume differences in entry rates to be due
to differences in fertility rates and immigration only, we relate Crt and Irt to Entryrt−1,t

according to
Entryrt−1,t

Lrt−1
= x × ιCrt + Irt

Lrt−1
,

where x is a scalar that reflects measurement error, e.g., some children die, time is not
discrete (i.e., the 16 year old children enter the labor market earlier than the 5 yr old
children), or immigrants might move across locations within the US in-between Census
years. Then

nrt−1 = 1 − δ + x × ιCrt + Irt

Lrt−1
,

where Crt, Irt and Lrt−1 are observed in the data.

We choose the scalar x to ensure that this accounting equation satisfies the aggregate
rate of employment growth in the Census, that is we ensure that the following equation
holds in the data:

Total employment at t = ∑
r

(
1 − δ + x

ιCrt + Irt

Lrt−1

)
Lrt−1.

Rearranging terms implies that

x =
Total employment in t − (1 − δ)Total employment in t-1

∑r (ιCrt + Irt)
.

Hence, for a given exit rate δ and labor force participation rate ι we pick the scale x
for the aggregate birth and immigration inflow to account for all employment growth.
And then we use this x to calculate - in the model - the number of workers in region r
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prior to their migration choices as

LY
rt = nrt−1Lrt−1 = Lrt−1 (1 − δ) + x (ιCrt + Irt) .

Hence, local labor force growth prior to worker’s migration choices depends on the
observable (ιCrt + Irt) and it has the correct slope for our model to be consistent with
aggregate employment growth.

To pick the exit rate δ, note that the fraction of old workers at time t is given by

Share of old workerst =
(1 − δ)∑r Lrt−1

∑r LY
rt

= (1 − δ)
∑r Lrt−1

∑r Lrt
.(A.16)

Because ∑r Lrt−1
∑r Lrt

is simply the ratio of the total labor force at t − 1 divided by the total
labor force at t, which are both observed, we can calculate δ for any target of the share
of old workers. A generation in our model corresponds to 20 years in the data. In
calibrating δ, we think of 0-20 year olds as not working, of 20-40 year olds as “young”
workers, and of “40-60” year olds as “old workers.” The share of old workers in our
data is 0.34, 0.35 and 0.37 in 1880, 1900, and 1920, respectively. Because, empirically,
some people above 60 are still in the workforce, we take a number of 0.45. Together
with a rate of employment growth of about 35% observed in the data (at the 20 year
horizon), equation (A.16) implies that δ is given by 0.4.

To calibrate ι, we combine the mortality rate of children with the rate of labor force
participation among 20-40 year olds in 1900. which is about 0.5 in our data, which
comprises both men and women. As a result, we set ι = 0.5.

In Figure A.3, we show the calibrated exogenous rate of employment growth, nrt,
for the two time periods 1880-1900 and 1900-1920. The figure shows that, on net,
exogenous employment growth was slightly higher in agricultural regions. The rela-
tionship between agricultural specialization and subsequent exogenous employment
growth weakens somewhat over these periods suggesting employment growth became
somewhat more balanced as fertility rates in more rural regions started to decline.
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TABLE A.1: EMPLOYMENT GROWTH ACROSS REGIONS: 1880-1900 AND 1900-1920

EMPLOYMENT GROWTH (∆ log Lrt)

srAt -0.360∗∗∗ -0.753∗∗∗ -0.358∗∗∗ -0.773∗∗∗ -0.782∗∗∗

(0.0309) (0.0509) (0.0825) (0.0228) (0.0272)

R2 0.167 0.315 0.138 0.326 0.475

Observations 990 990 990 3910 3910
Geography CZ CZ CZ County County
FEs State State State CZ
Weighted Yes Yes Yes Yes

Notes: All regression are weighted by initial total employment of the commuting zone (columns 1-3) or county (4-5) and include decade
fixed effects. Columns 2-4 also contain state fixed effects and column 5 commuting zone fixed effects.Robust standard errors in parentheses.
∗ , ∗∗ , and ∗∗∗ denote statistical significance at the 10%, 5% and 1% level respectively.

FIGURE A.3: EXOGENOUS EMPLOYMENT GROWTH
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Notes: This figures shows the calibrated rate of exogenous employment growth across commuting zones between 1880-1900 and 1900-1920.

In each year there is one region with a rate above 3 which we drop to shows the variation among the remaining observations in more detail.

Finally, in Table A.1 we report the relationship between agricultural employment
share and future population growth. The structure of Table A.1 is identical to Table
1 in Section 1. In our quantitative analysis, we calibrate our model to the coefficient
reported in the first column.

B.2.2 Migration Gravity Equations

In this section, we describe our estimation of the distance elasticity of migration costs,
κ. In the model, the mass of workers migrating from region r to region r′ between two
periods is given by:

Mrr′t = mrr′tLY
rt =

(µrr′Vr′tBr′t)
ε

∑j
(
µrjVjtBjt

)ε Lrt−1nrt−1.

A - 16



We project the moving cost between two regions on the physical distance between
them, i.e., we set µrr′ = d−κ

rr′ ., where the parameter κ parameterizes the distance cost
of migration. The larger κ, the more the destination utility of areas furhter away is
discounted. In our empirical estimation, we set drr′ ∀r = r′ to the average distance
between county centroids within a commuting zone, and drr′ ∀r ̸= r′ to the distance
between commuting zone centroids.

Taking logs on both sides and grouping terms then yields:

(A.17) log Mrr′t = αr′t + βrt − κϵ logdrr′

where

αr′t = ε log(Vr′tBr′t) and βrt = log(Lrt−1nrt−1)− log

(
∑
r′′

(
d−κ

rr′′Vr′′tBr′′t
)ε

)
.

Since we calibrate the model at the commuting zone level, the indices r and r′ refer to
commuting zones. Equation A.17 suggests a fixed effect regression of commuting zone
migration flows to recover to recover the elasticity of migration flows to distance, κϵ,
relevant in our model.

The Decennial Census files do not contain information on workers’ migration history
at the commuting zone or county level. Hence, it is impossible to directly construct
cross-commuting zone migration flows. We therefore rely on information from the
linked Census files described in our data section above. Since linking rates are relatively
low, the majority of bilateral commuting zone pairs exhibit no migration flows between
1880 and 1900. We hence estimate equation (A.17) using Poisson Pseudo Maximum
Likelihood (PPML), as proposed by Silva and Tenreyro (2006). More specifically, we
estimate the following equation using PPML:

(A.18) Mrr′t = exp (αr′t + βrt − κϵ logdrr′) + ϵrr′t.

Columns (1) and (2) in Table A.2 report the estimates based on two different linked-
Census files by Ruggles et al. (2015) (“IPUMS”) and Abramitzky, Boustan, Eriksson,
Feigenbaum, and Pérez (2021) (“ABE”). These files differ slightly in their technique
to link individuals across census years. Reassuringly, both produce similar estimates:
we estimate an elasticity of migration flows with respect to geographic distance (κε) of
around 2.75.

Linking data across census years requires a set of assumptions and large amounts of
data processing. For robustness, we therefore repeat the estimation on a different data
set that we can directly compute from the cross-sectional Census data but that only
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TABLE A.2: MIGRATION GRAVITY EQUATIONS

LOG BILATERAL MIGRATION PROBABILITY

Log Distance -2.922∗∗∗ -2.632∗∗∗ -3.925∗∗∗ -2.262∗∗∗ -2.291∗∗∗

(0.0327) (0.0111) (0.0572) (0.0306) (0.0311)

R2 0.8135 0.8989 0.9296 0.806 0.799

Observations 254762 349230 3983 3983 3935
Year FE Yes Yes Yes
Geography CZ CZ State State State
Estimator PPML PPML PPML OLS OLS

Notes: Notes: All regressions contain origin and destination fixed effects. (1) PPML with census data from IPUMS linked by IPUMS. (2)
PPML with census data from IPUMS linked by Abramitzky Boustan Eriksson. (3) PPML in state flow data from IPUMS, pooled across all
years. (4) OLS regression in state flow data from IPUMS adding a 1 to all flows, pooled across all years. (5) OLS regression in state flow
data from IPUMS dropping zero flow observations, pooled across all years. Note the linked data is only available for one cross-section:
1880-1900. For the regressions using state data we pool data on lifetime migration between 1880-1900 and 1900-1920 and add year fixed
effects into the regressions.

contains state-to-state flows. In particular, as discussed in the data section above, we use
the information on the state of birth of each worker contained in the Decennial Census
files to construct a matrix of lifetime state-to-state migration flows for all workers
between 20 and 40. Column 3 of Table A.2 presents the PPML estimates of the distance
elasticity in the state-to-state data. The estimate is larger than in the commuting zone
data highlighting that there are, by construction, less flows across states than across
commuting zones making distance appear as a larger impediment of migration.

The state-by-state migration matrix has very few pairs of states with zero flows. Across
the two cross-sections of data for 1880-1900 and 1900-1920, about 50 pairs exhibit zero
flows.As a result, we can also estimate the gravity regression using simple OLS. instead
of PPML. Columns 4 and 5 in Table A.2 report estimates from a regression where we
simply replace zeros with 1s and another where we omit all zero-valued pairs of states.
Since states further apart are more likely to report zero flows because they are further
apart, dropping them leads to a smaller estimate of the elasticity at 2.62, the lowest of
all our estimates.

Note that our theory only produces an approximate gravity equation for the flows
between groups of commuting zones (such as states) because of Jensen’s inequality. As
a result, the distance elasticities stemming from state-level data do not map directly
to the structural parameters κε. Nevertheless, we find it re-assuring that the state-
level regressions estimates are not too dissimilar from the regression estimates using
commuting zone. Furthermore, since a fraction of moves in the model happen across
commuting zones within the same state, we would expect the state-to-state distance
coefficient to be larger than the commuting zone to commuting zone one in model-
generated data, too.
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B.2.3 Computing Macroeconomic Aggregates

Aggregate GDP Growth

We measure the growth rate of aggregate GDP using the Fisher chained index. The
Fisher Index is defined by

gF
t =

√
Pct−1Ct

pct−1Ct−1
× PctCt

PctCt−1
,

where Pct is the price of the consumption good at time t and Ct is the quantity.

In the context of our model with R regions and two sectors s, we construct the following
auxiliary indices:

St−1 (Pt−1) =
R

∑
r=1

S

∑
s=1

Prst−1Crst−1 and St−1 (Pt) =
R

∑
r=1

S

∑
s=1

PrstCrst−1.

and

St (Pt−1) =
R

∑
r=1

S

∑
s=1

Prst−1Crst and St (Pt) =
R

∑
r=1

S

∑
s=1

PrstCrst.

where Prst(Crst) denotes the prices (consumption quantities) of sector s goods in region
r at time t.

We then combine these expressions into the corresponding Fisher Index as follows:

gF
t =

√
St (Pt−1)

St−1 (Pt−1)
× St (Pt)

St−1 (Pt)
.

In our model, Crst can be computed as

CrAt =
ϑrAt

∫
ydFr (y)

PrAt
=

ϑrAtΓζwrtLrt

PrAt

CrMt =
(1 − ϑrAt)

∫
ydFr (y)

PrMt
=

(1 − ϑrAt)ΓζwrtLrt

PrMt
.

Relative Prices

To compute the time-series of the relative price of non-agricultural to agricultural goods,
we compute chained sectoral price indices and then take their ratio. More specifically,
consider sector s and time-period between t − 1 and t. Let PL

st and PP
st denote the
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Laspeyres and Paasche indices, respectively. These are given by

PL
st =

∑r PrstCrst−1

∑r Prst−1Crst−1
PP

st =
∑r PrstCrst

∑r Prst−1Crst
.

The Fisher Index for sector s is then given by PF
st =

√
PL

st × PP
st.. The time-series of the

relative price is then given by PM−A
t = PF

Mt/PF
At.

B.2.4 Cross-sectional Estimates of the Engel Elasticity η

Targeting the time series of the agricultural employment share implied an estimate of
η = 0.93. However, our model also implies a log-linear relationship between individuals’
expenditure share on agricultural products and their total expenditure that can be used
to estimate η from cross-sectional microdata:

(A.19) lnϑA (y, Pr,M) = ln
(
−νP−1

r,M

)
− η lny,

where we used our estimate ϕ ≈ 0. We use the 1936 Consumer Expenditure Survey
(CEX) by the U.S. Bureau of Labor Statistics obtained from the Inter-university Con-
sortium for Political and Social Research (ICPSR) to provide direct evidence on the
log-linear relationship between expenditure shares and total expenditure.19

The CEX contains micro data on expenditure of individuals on a large variety of cate-
gories and a swath of individual characteristics. We use the household files. We obtain
information on households’ total expenditure, expenditure on food, urban/rural status,
size, interview data, occupation and industry of household head, race of household
head, and county of residence.

In Figure A.4, we show that this log-linear relationship is a good description of the data.
In the left panel, we display the cross-sectional distribution of food shares. Empirically
this variation is substantial, ranging from 5% to 80%. In the right panel, we show the
empirical relationship between log expenditure and log food shares as a binned scatter
plot. As implied by our theory, the elasticity between food shares and expenditure is
indeed essentially constant across the entire range of the distribution of expenditure.

The slope coefficient falls in between η ∈ (0.315,0.362) depending on which additional
controls are chosen, implying that our “macroestimate” of η = 0.93 is higher than the
microestimate that exploits cross-sectional variation.

19We note that our theory is written in terms of value added. The expenditure data is in terms of final expenditure data. Herrendorf,
Rogerson, and Valentinyi (2013) show that in general there is no direct mapping between the preference parameters of the value added and
the final good demand system. However, Fan et al. (2022) show that for the class of PIGL preferences used here, the Engel elasticity η is
portable between the final good and value added demand system.
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FIGURE A.4: HETEROGENEITY IN FOOD EXPENDITURE SHARES
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Notes: The figure shows the cross-sectional distribution of the individual expenditures shares on food (left panel) and the bin scattered
relationship between the (log) expenditure share on food and (log) total expenditure (right panel). The relationship in the right panel is
conditional on a set of location and family size fixed effects.

B.2.5 Validating the First-Order Approximation

In Figure 7, we reported the decomposition of local wage growth into the four compo-
nents highlighted in Proposition 2. In the theory outlined in the paper, the underlying
first-order approximation that decomposes wage growth into the four margins takes
the following form:

(A.20)

d lnwrt = ϕM (srA)

(
1
σ

d lnDt +
σ − 1

σ
d ln ZrMt

)
+ ϕA (srA) (d ln ZrAt − αd lnℓrt) .

The theory also permits a similar first-order approximation can be derived for the
change in local agricultural employment shares

(A.21) dsrAt = ψ (srA)

(
d ln ZrAt − αd lnℓrt −

σ − 1
σ

d ln ZrMt −
1
σ

d lnDrt

)
,

In the quantitative model there is an additional “agricultural demand” term in these
approximations that emerges once there are trade costs for agricultural goods, which
we abstracted from in the main theory but re-introduce in the quantitative version of
the model.

In Figure A.5, we show that equations A.20 and A.21 provide an excellent fit of the data
despite being an approximation. This provides justification for using these equations to
decompose local wage growth and industrialization in Section 4. Specifically, the left
panel shows the correlation between local wage growth based on equation (A.20) and
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local wage growth stemming from the non-linear solution of the model. If the model
were to follow equation (A.20) exactly, the results should lie on a 45 degree line. Each
red dot represents a commuting zone, the grey dashed line is a 45 degree line, and
the solid red line represents the best fit through the data. The right panel compares
the change in the local agricultural employment share based on equation A.21 to the
change in the local agricultural employment in the simulated model. The linear fit line
is again very close to the grey dashed 45 degree line providing support for using the
first-order approximation in our analysis.

FIGURE A.5: ASSESSING THE ACCURACY OF THE FIRST-ORDER-APPROXIMATIONS
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Notes: The left panel shows the correlation between actual wage growth in the model and predicted wage growth based on equation A.20.

The right panel shows the correlation between actual agricultural employment share changes in the model and predicted agricultural

employment share changes based on a first order approximation in the model. Each dot a is a commuting zone. and the size of the dots is

proportional to a commuting zone’s total employment in 1880. The dashed grey line is a 45 degree line. The solid line in each panel is a

weighted fit line using 1880 total employment as weights.
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