
Persistence and Path Dependence

in the Spatial Economy∗

Treb Allen

Dartmouth and NBER

Dave Donaldson

MIT and NBER

October 2020

Abstract

How much of the spatial distribution of economic activity today is determined by

history rather than by geographic fundamentals? And if history matters for the distri-

bution, does it also affect overall efficiency? This paper develops a tractable theoretical

and empirical framework that aims to provide answers to these questions. We derive

conditions on the strength of agglomeration externalities, valid for any geography, un-

der which temporary historical shocks can have extremely persistent effects and even

permanent consequences (path dependence). We also obtain new analytical expres-

sions, functions of the particular geography in question, that bound the aggregate

welfare level that can be sustained in any steady-state, thereby bounding the poten-

tial impact of history. Our simulations—based on parameters estimated from spatial

variation across U.S. counties from 1800-2000—imply that small variations in histori-

cal conditions have substantial consequences for both the spatial distribution and the

efficiency of U.S. economic activity, both today and in the long-run.
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1 Introduction

Economic activity in modern economies is staggeringly concentrated. For example, more

than 1/6th of value-added in the United States is currently produced in just three cities

that occupy less than 1/160th of its land area. But perhaps even more remarkable are the

historical accidents that may have determined the location of these three cities—one was a

Dutch fur trading post, one a pueblo for 22 adult and 22 children settlers designated by a

Spanish governor to honor the angels, and one a river mouth known to Algonquin residents

for its wild garlic (or, chicago-ua).

There is no shortage of examples in which the quirks of history appear to influence the

current location of economic activity through either persistence—the long-lived dependence

of current outcomes on temporary events—or path dependence—where temporary events

fully govern long-run outcomes. See Nunn (2014) for a review. But how widespread should

we expect these phenomena to be in the spatial economies around us? Going further, “does

history matter only when it matters little?”—in Rauch’s (1993) memorable phrase—because

it merely reshuffles the current location of economic activity without much affecting aggregate

efficiency?

In this paper we develop a new framework designed to shed light on these questions and

then apply it to data from the United States between 1800 and 2000. We extend a rich vein of

theoretical modeling (as synthesized in, for example, Fujita, Krugman, and Venables, 1999),

in which agglomeration externalities can give rise to a potential multiplicity of equilibria,

by adding overlapping generation dynamics and an arbitrary number of locations featuring

general paths of geographic fundamentals and frictions. We derive conditions under which

such an environment can feature substantial persistence and even path dependence. And our

simulations, based on estimated parameter values, display exactly such phenomena for the

U.S. spatial economy: even relatively minor historical shocks exhibit centuries-long depen-

dence, and these shocks often lead to large and permanent differences in long-run aggregate

welfare.

To arrive at this conclusion, we begin in Section 2 by stating four new theoretical re-

sults about this dynamic economic geography model. The first characterizes a condition for

dynamic equilibria—that is, the transition paths that would take this economy from any

starting point to any steady-state—to be unique, regardless of the underlying path of geo-

graphic fundamentals, as is important for the quantitative questions that we pose here. The

second highlights how temporary shocks may be particularly persistent—that is, feature a

very slow rate of convergence to a steady-state—when an economy gets close to the parame-

ter threshold at which uniqueness is not guaranteed. Our third result characterizes necessary
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(and“globally”sufficient) conditions for the economy to feature multiple stable steady-states,

which then creates the potential for path-dependent impacts of a temporary shock that could

push an economy onto a permanently different path towards a distinct steady-state. Finally,

our fourth result derives bounds on the aggregate welfare that is attainable across all possible

steady-states, which is useful (given the numerical infeasibility of finding all steady-states in

high-dimensional settings like ours) for distinguishing environments where path dependence

has potentially large efficiency consequences.

The conditions in these four results all hinge on the strength of agglomeration forces

(spillovers in production and amenities) relative to dispersion forces (agents’ preferences for

geographical diversity in trade and migration). Crucially, however, it is contemporaneous

agglomeration spillovers that govern equilibrium uniqueness and the duration of persistence,

whereas it is the sum of contemporaneous and historical spillovers that matters for the

existence of multiple steady-states. This means that there exists a parameter range that

features both well-behaved, unique transition paths as well as rich dynamic phenomena such

as persistence and path dependence.

We therefore set out in Section 3 to estimate these parameters for the long-run spatial

history of the United States from 1800-2000. Our estimating equations take the familiar

form of a cross-location labor supply and demand system—as in the canonical Rosen-Roback

tradition (Rosen, 1979; Roback, 1982; Glaeser, 2008) but augmented to allow for historical

spillovers and interactions across locations due to costly trade and migration.

Despite this added empirical flexibility, parameter identification—even with an underly-

ing potential for multiplicity—is still assured via familiar exclusion restrictions of the sort

discussed by Roback (1982), albeit time-varying versions of these restrictions in our case. For

the locational labor supply equation, which is identified from demand-side variation, we use

shifters of agricultural productivity coming from the changing importance of certain crops

over time and the advent of higher intensity cultivation methods. And for the locational

labor demand equation we use shifters of the relevance of temperature extremes over time,

which plausibly have changed the amenity value of certain locations, and hence labor supply,

due to the development of technologies such as heating and air conditioning. Our estimates

imply modest productivity spillovers, but an important role for positive historical spillovers

on amenities—which are, as we show, consistent with models that feature durable locational

investments, for example in housing.

Based on these parameter estimates we turn in Section 4 to a simulation exercise that

is designed to shed light on the role that history plays in the modern-day U.S. spatial econ-

omy. Amidst the so-called “Technological Revolution” at the dawn of the 20th Century (c.f.

Landes, 2003) it seems plausible that innovations such as electrification and the automobile
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had differential impacts across space for reasons that could be partially attributed to luck.

For example, Henry Ford was born on a farm near Detroit, and Thomas Edison chose the

1901 Pan-American Exposition to demonstrate mass illumination via his new AC power,

earning the host city of Buffalo its nickname, the “City of Light”. Inspired by such anecdotes

of happenstance, our counterfactual exercise asks what would have happened to the trajec-

tories of two similar cities if their 1900 productivity fundamentals were randomly swapped,

while holding all other conditions constant both before and after 1900. In practice, we pair

locations on the basis of their 1900 population—for example, Buffalo (with a population of

436,000 in 1900) is paired with Cincinnati (412,000). In order to derive general lessons from

such counterfactual swaps, we conduct one hundred simulations in which every location has

an equal chance of either drawing its factual 1900 productivity or its counterfactual swap

partner’s 1900 productivity.

Even these relatively modest counterfactual swap histories turn out to have dramatic

consequences. For example, across our simulations the median location has an elasticity

of 0.89 between its population in 2000 and its population in 1900—so that a 10% drop in

population due to an unfavorable but one-off productivity shock leaves the location about

9% smaller even a century later. And while trade and migration opportunities mean that

the welfare of a location’s residents is less affected by historical shocks, we find that the

elasticity of realized welfare of adults residing in a location to historical shocks is still 0.21

for the median location. Simulating the economies forward into the future—undoubtedly

a heroic exercise, but one that illustrates the workings of a model like ours—we find that

the long arm of history reaches far into the future, with median population and welfare

elasticities of 0.45 and 0.11, respectively, 500 years out.

Perhaps even more surprisingly, we find that these temporary historical shocks often

have permanent effects on the spatial distribution and efficiency of the aggregate economy.

That is, not only do our theoretical results imply that path dependence is possible, but

our simulations find that even modest perturbations of history can knock the economy onto

vastly different tracks. We find that the different counterfactual histories converge—though

by no means uniformly—to (at least) three different steady-states, each with a distinct

spatial distribution of economic activity. Moreover, the welfare gap between the steady-

states is substantial: equivalent to a difference in growth rates of 0.25% per year for about

500 years. Simulating the evolution of the factual economy forward, we find that it ends up

closer to the best counterfactual simulated steady-state than to the worst, although this still

implies that long-run welfare in the factual economy could be more than 50% higher if the

arrangement of spatial productivity within matched location pairs in 1900 had been slightly

different. Finally, our analytical upper bound confirms that the steady-states probed by our
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swap-counterfactuals are close to the most efficient that any history could achieve, but the

lower bound cannot rule out alternative historical conditions that may have been much much

worse.

These findings shed new light on a number of strands of related work. First, we are

inspired by an empirical literature that documents examples of spatial persistence and path

dependence, or lack thereof, in the aftermath of historical events in a vast array of settings.

Seminal work by Davis and Weinstein (2002, 2008) and Bleakley and Lin (2012, 2015) is

emblematic of such lessons since Bleakley and Lin (2012, 2015) demonstrate long-lived (multi-

century) persistence from long-obsolescent shipping technologies in the U.S. whereas Davis

and Weinstein (2002, 2008) find that World War II bombing left only a relatively transitory

(multi-decade) spatial trace in Japan. Wider examples from the U.S. alone include enduring

impacts of slavery (Nunn, 2008), political boundaries (Dippel, 2014), flooding (Hornbeck

and Naidu, 2014), mining activity (Glaeser, Kerr, and Kerr, 2015), fire damage (Hornbeck

and Keniston, 2017), war destruction (Feigenbaum, Lee, and Mezzanotti, 2018), frontier

exposure (Bazzi, Fiszbein, and Gebresilasse, 2020), and immigration (Sequeira, Nunn, and

Qian, 2020)—among many other factors (see, e.g., Kim and Margo, 2014).1

Our findings clarify the conditions under which one could expect spatial persistence and

path dependence to arise, which may rationalize the heterogenous effects seen in prior work.

It can also provide a benchmark for the interpretation of studies that find persistent impacts

of a given historical event and then aim to distinguish—a challenge for such work, as Nunn

(2014) discusses—the hypothesis of a change to dynamics of fundamentals from the alterna-

tive that any temporary shock to fundamentals would have left a persistent geographic trace

due to the logic of agglomeration and endogenous spatial lock-in.

Second, on the theory side, we draw on the insights of a literature that pioneered the

understanding of path-dependent geographic settings. Krugman (1991), Matsuyama (1991),

and Rauch (1993), for example, developed models with two locations and infinitely-lived

agents. As fully elucidated in Herrendorf, Valentinyi, and Waldmann (2000) and Ottaviano

(2001), the dynamics of equilibrium paths in such settings are dauntingly complex even

in small-scale models, let alone in the high-dimensional empirical settings with realistic

1Further afield, just to cover a few examples, Dell (2010) documents persistent negative effects of forced
labor institutions in Peru, Redding, Sturm, and Wolf (2011) uncover evidence for persistence in the location
of airline hubs amidst the division and reunification of Germany, Jedwab and Moradi (2016) find persistent
impacts of colonial railroads throughout most of Africa, Hanlon (2017) illustrates a long-lived spatial imprint
resulting from the interruption of supplies to Britain’s cotton textile industry cities during the U.S. Civil
War, Henderson, Squires, Storeygard, and Weil (2018) describe how the differing extent to which physical
geography attributes matter today for early and late developing countries is consistent with long persistence,
Michaels and Rauch (2018) highlight the differing extents of persistence of Roman towns in England and
France, and Dell and Olken (2020) document the enduring industrial development around sites of colonial
investment in Indonesia.
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geographies that are necessary for quantitative work. We have therefore endeavored to

extract core lessons from these setups and adapt them to a framework that is amenable to

the type of empirically-grounded quantification that is our goal. The new theoretical results

that we derive regarding speed of convergence, uniqueness of dynamic paths, multiplicity

of steady-states, and bounds on aggregate welfare across steady-states all work towards

that objective. The main cost of this tractability is that we shut down multiplicity arising

from forward-looking behavior, though with the relatively long time periods in our empirical

analysis this restriction may not be especially limiting in practice.

Finally, we build on a recent body of work on quantitative economic geography mod-

els such as the static environments of Roback (1982), Glaeser (2008), Allen and Arkolakis

(2014), Ahlfeldt, Redding, Sturm, and Wolf (2015)—summarized and synthesized in Redding

and Rossi-Hansberg (2017)—as well as the pioneering dynamic models in Desmet, Nagy, and

Rossi-Hansberg (2018), Caliendo, Dvorkin, and Parro (2019), and Nagy (2020). Our contri-

bution is to extend these tools in order to facilitate the explicit study of geographic persis-

tence and path dependence, to estimate, in the case of 200 years of U.S. economic geography,

elasticities that our extended framework highlights as essential for such a theme, and then

to apply the resulting estimates to counterfactual simulations about the consequentiality of

historical shocks for the location and aggregate efficiency of economic activity in the U.S.

today.

2 A dynamic economic geography framework

In this section we develop a dynamic economic geography framework that is amenable to the

empirical study of geographic path dependence throughout U.S. history. A large set of regions

possess arbitrary, time-varying fundamentals in terms of productivity and amenities. They

interact via costly trade in goods and costly migration. Crucially, production and locational

amenities both potentially involve contemporary and historical non-pecuniary spillovers—the

forces behind both long persistence and path dependence.

2.1 Setup

There are i ∈ {1, ..., N} locations and time is discrete and indexed by t ∈ {0, 1, ....}. Each

individual lives for two periods. In the first period (“childhood”), a given individual is born

where her parent lives and consumes what her parent consumes. At the beginning of the

second period (“adulthood”), she realizes her own preferences and chooses where to live; then,

in her chosen location, she supplies a unit of labor inelastically to produce, she consumes,
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and she gives birth to a child. Let Lit denote the number of workers (adults) residing in

location i at time t, where the total number of workers
∑N

i=1 Lit = L̄, is normalized to a

constant in each period t.2

2.1.1 Production

Each location i is capable of producing a unique good—the Armington (1969) assumption.

A continuum of firms (indexed by ω) in location i produce this homogeneous good un-

der perfectly competitive conditions with the constant returns-to-scale production function

qit(ω) = Aitlit(ω), where labor lit(ω) is the only production input, and hence
´
lit(ω)dω = Lit.

The productivity level for the location is given by

Ait = ĀitL
α1
it L

α2
it−1, (1)

where Āit is the exogenous (but unrestricted) component of this location’s productivity in

year t. Importantly, the two additional components of a location’s productivity in equation

(1) depend on the number of workers in that location both in the current period, Lit, and

in the previous period, Lit−1. We assume that firms take these aggregate labor quantities as

given. Hence the parameter α1 governs the strength of any potential (positive or negative)

contemporaneous agglomeration externalities working through the size of local production.

This is a simple way of capturing Marshallian externalities, external economies of scale,

knowledge transfers, thick market effects in output or input markets, and the like. The

presence of the term Lα1
it is standard in many approaches to modeling spatial economies,3

albeit typically in static models that would combine the effects of Lit and Lit−1.

The parameter α2, on the other hand, governs the strength of potential historical agglom-

eration externalities. This allows for the possibility that two cities with equal fundamentals

Āit and sizes Lit today might feature different productivity levels Ait today because they

had differing sizes Lit−1 in the past. There are many potential reasons that one might ex-

pect α2 > 0, and we describe two such sets of microfoundations briefly here (with complete

derivations in Appendix B.1).

Consider first the potential persistence of local knowledge. In particular, we present a

model based on Deneckere and Judd (1992), where firms can incur a fixed cost to develop a

new variety, for which they earn monopolistic profits for a single period. In the subsequent

period, the blueprint for the product becomes common knowledge so that the variety is

produced under perfect competition, and we assume the product becomes obsolete (with

2Our model economy exhibits a form of scale-invariance that means that, for the purposes of our analysis
here, the total number of workers in any time period is irrelevant for the distribution of economic activity.

3For example, see Redding and Rossi-Hansberg (2017).
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zero demand for it) two periods after its creation. As in Krugman (1980), the equilibrium

number of new varieties will be proportional to the contemporaneous local population. Given

consumers’ love of variety, new varieties act isomorphically to an increase in the productivity

of the single Armington product, resulting in the precise form of equation (1) with α1 ≡ χ
ρ−1

and α2 ≡ 1−χ
ρ−1

, where χ is the expenditure share on all new varieties and ρ > 1 is the elasticity

of substitution across individual varieties.

Second, consider the potential for durable investments in local productivity. In particular,

we present a model based on Desmet and Rossi-Hansberg (2014), in which firms hire workers

both to produce and to innovate, and where innovation increases each firm’s own productivity

contemporaneously and increases all firms’ productivity levels in the subsequent period. If

firms earn zero profits in equilibrium due to competitive bidding over a fixed factor (e.g.

land), then, as in Desmet and Rossi-Hansberg (2014), the dynamic problem of the firm

simplifies to a sequence of static profit-maximizing problems. With Cobb-Douglas production

functions, equilibrium productivity can be written as equation (1) with α1 ≡ γ1
ξ
−(1− µ), and

α2 ≡ δ γ1
ξ

, where γ1 governs the decreasing returns of innovation in productivity, ξ governs

the decreasing returns of labor in innovation, δ is the depreciation of investment, and µ is

the share of labor in the production function.

Of course, there are surely many sets of microfoundations that could generate the pro-

ductivity spillover features assumed in equation (1). In what follows, we characterize the

properties of the model and estimate the strength of the spillovers without taking a stand

on the particular source of these externalities.

2.1.2 Consumption

An adult and her child consume with the same preferences, with a constant (but irrelevant)

fraction allocated to the child. They have constant elasticity of substitution (CES) prefer-

ences, with elasticity σ > 1, across the differentiated goods that each location can produce.

Letting wit denote the equilibrium nominal wage, and letting Pit be the price index (solved

for below), the deterministic component of welfare—that is, welfare up to an idiosyncratic

shock that we introduce below—of any adult residing in location i at time t is given by

Wit ≡ uit
wit
Pit

, (2)

where the component uit refers to a location-specific amenity shifter that is given by

uit = ūitL
β1
it L

β2
it−1. (3)
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The term ūit allows for flexible exogenous amenity offerings in any location and time pe-

riod. Endogenous amenities work analogously to the production externality terms introduced

above, with the parameters β1 and β2 here capturing the potential for the presence of other

adults in a location to directly affect (either positively or negatively, depending on the sign

of β1 and β2) the utility of any given resident. We assume that consumers take these terms

as given, just as they take factor and goods prices as given, when making decisions.

As is well understood, a natural source of a negative value for β1 in a model such as

this one is the possibility of local congestion forces that are not directly modeled here; for

example, if non-tradable goods (such as housing and land) are in fixed supply locally and

are demanded with fixed expenditure shares then −β1 would equal the share of expenditure

spent on such goods. Such effects would work contemporaneously, so they would govern β1.

As with α2, the parameter β2 stands in for phenomena through which the historical pop-

ulation Lit−1 affects the utility of residents in year t directly (that is, other than through

productivity, wages, prices, or current population levels). Again it seems potentially impor-

tant to allow for such effects given the likelihood that previous generations of residents may

leave a durable impact, positive or negative, on their former locations of residence. Positive

impacts could include the construction of infrastructure (e.g. parks, sewers, or housing), and

negative impacts could include environmental damage or resource depletion.

It is straightforward to construct a model that generates exactly the specification of

equation (3) for amenities. We sketch such a microfoundation here, and again present the

complete set of derivations in Appendix B.2. We consider a model where agents consume

both a tradable good and local housing, and each unit of land is owned by a real estate de-

veloper who bids for the rights to develop the land and then chooses the amount of housing

to construct. To build housing, the developer combines local labor and the (depreciated)

housing stock from the previous period. We assume the bidding process ensures developers

earn zero profits, so as in Desmet and Rossi-Hansberg (2014) the dynamic problem of how

much housing to construct simplifies into a series of static profit maximizing decisions. In

equilibrium, the higher the contemporaneous population, the lower the utility of local res-

idents (as the residents each consume less housing), whereas the higher the population in

the previous period, the higher the utility of local residents (as more workers in the previous

period results in a greater housing stock today). In particular, if production and utility func-

tions are Cobb-Douglas (with µ the share of old housing in production and 1−λ the share of

housing in expenditure) this model will be isomorphic to equation (3), with β1 = −µ1−λ
λ
< 0

and β2 = ρµ1−λ
λ
> 0, where ρ is the depreciation rate of the housing stock.

As with the productivity spillovers, we emphasize that there may be other theoretical

rationales for the amenity spillovers assumed in equation (3). In terms of what follows, there
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is no need to emphasize any one particular microfoundation.

2.1.3 Trade

Bilateral trade from location i to location j incurs an exogenous iceberg trade cost, τijt ≥ 1

(where τijt = 1 corresponds to frictionless trade). Given this, bilateral trade flow expendi-

tures Xijt take on the well-known gravity form given by

Xijt = τ 1−σ
ijt

(
wit
Ait

)1−σ

P σ−1
jt wjtLjt, (4)

where

Pit ≡

(
N∑
k=1

(
τki
wkt
Akt

)1−σ
) 1

1−σ

(5)

is the CES price index referred to above.

For the empirical analysis below, it is convenient to write equation (4) as:

Xijt = τ−θijt ×
(
Yit/Y

W
)

P1−σ
it

× Yjt

P 1−σ
jt

, (6)

where

Pit ≡
(
wit
Ait

)−1(
Yit
Y W

) 1
1−σ

, (7)

Yit ≡ witLit, and Y W is total world income (which we normalize to one in what follows). In

the terminology of the gravity trade literature (see e.g. Anderson and Van Wincoop, 2003),

(the inverse of) Pit captures the outward trade market access of location i and (the inverse

of) Pjt captures the inward trade market access of location j.

2.1.4 Migration

Recall from the discussion of timing above that Lit−1 adults reside in location i at time t−1,

and they have one child each. Those children choose at the beginning of period t—as they

pass into adulthood––where they want to live as adults in order to maximize their welfare

as adults.

As described above, adults who reside in a location j enjoy a deterministic component

of utility given by Wjt in equilibrium, which we will refer to as ex-post welfare. Similarly

to the trade costs introduced above, migrating from i to j costs µijt ≥ 1 units of utility

(so that frictionless migration is denoted by µijt = 1). This means that the deterministic

utility enjoyed by a migrant who moves from location i to location j is
Wjt

µijt
. However, we
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also allow for idiosyncratic unobserved heterogeneity in how each child will value living in

each location j in adulthood. Letting the vector of such idiosyncratic taste differences (one

for each location) be denoted by ~ε, the actual period payoff of a child who receives the draw

~ε while living in location i at time t− 1 who chooses to move to location j as an adult is:

Wijt (~ε) ≡ Wjt

µijt
εj, (8)

so the particular shock for location j, denoted by εj, simply scales up or down the determin-

istic component of utility,
Wjt

µijt
. Hence, any new adult chooses her location as follows:

max
j
Wijt (~ε) = max

j

Wjt

µijt
εj.

We further assume that ~ε is drawn independently from a Frechet distribution with shape

parameter θ (and a set of location parameters that we normalize to one without loss). The

number of children in location i at time t − 1 who choose to move to location j at time t,

Lijt, is then given by:

Lijt = µ−θijtΠ
−θ
it Lit−1W

θ
jt, (9)

where Πit ≡
(∑N

k=1 (Wkt/µikt)
θ
) 1
θ

summarizes the appeal of the migration options from

location i. Equation (9) says that there will be greater migration toward destination locations

j with high ex-post welfare Wjt and low bilateral migration costs µijt, and coming from origin

locations i that either have a lot of residents Lit−1 or poor outside options Πit.

Finally, for the empirical analysis below, it is convenient to write equation (9) as:

Lijt = µ−θijt ×
Lit−1

Πθ
it

× Ljt/L̄

Λ−θjt
, (10)

where

Λit ≡ Wit

(
Lit
L̄

)− 1
θ

. (11)

As in the flow of goods above, Πit captures the outward migration market access from i and

the (inverse of) Λjt captures the inward migration market access to j. It turns out that both

the outward and inward migration market access terms are closely related to the welfare of

agents, a point we turn to next.
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2.1.5 Welfare

Following a standard derivation, the expected adulthood period payoff of a child residing in

location i at time t− 1, prior to realizing her idiosyncratic shocks ~ε, is equal to the outward

migration access Πit:

E
[
max
j
Wijt (~ε)

]
= Πit. (12)

Similarly, given an appropriate weighting of children whose parents came from different

origins, we can express the period payoff of childhood for the average child residing in location

i at period t− 1 as equal to (the inverse of) the inward migration access:4

(∑
j

(
Ljit−1

Lit−1

)
E
[
Wjit−1 (~ε) |i = arg max

j
Wjit−1 (~ε)

]θ) 1
θ

= Λit−1. (13)

Assuming agents aggregate payoffs in childhood and adulthood equally in a Cobb-Douglas

fashion, the expected utility of an agent born in location i in period t−1, Ωi,t, is then simply

the geometric mean of the outward and (inverse) inward migration accesses:

Ωit =
√

Λit−1 × Πit. (14)

As it combines both the realized payoffs of childhood and the expected payoffs of adulthood,

in what follows we refer to Ωit as ex-ante welfare.

2.2 Dynamic Equilibrium

An equilibrium in this dynamic economy is a sequence of values of (finite) prices and

(strictly positive) allocations such that goods and factor markets clear in all periods.5

More formally, for any strictly positive initial population vector {Li0} and geography vector{
Āit, ūit, τijt, µijt

}
, an equilibrium is a vector of endogenous variables {Lit, wit,Wit,Πit} such

that, for all locations i and time periods t, we have:

4To account for the fact that children in i whose parents came from different origins inherit different
expected idiosyncratic preferences, we consider a generalized weighted mean across parents of all possible
origins, where the weights are their population shares in the destination and the generalized mean has the
same power as the distribution of idiosyncratic preferences (so that the aggregation function for the welfare
of agents across origins is the same as the aggregation function used by agents across destinations). We note
that an alternative microfoundation, in which a “stork” allocates children to expectant parents based on the
children’s idiosyncratic preferences, would deliver an identical expression.

5Throughout, we confine attention to equilibria where all locations are inhabited, as (1) these are the
empirically relevant types of equilibria at our geographic scale of analysis; and (2) in the presence of produc-
tivity and/or amenity spillovers, from equations (1) and (3), an uninhabited location will (trivially) remain
uninhabited forever.
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1. Total sales are equal to payments to labor: That is, a location’s income is equal to the

value of all locations’ purchases from it, or witLit =
∑

j Xijt. Using equation (4) this

can be written as

wσitL
1−α(σ−1)
it =

∑
j

KijtL
β(σ−1)
jt W 1−σ

jt wσjtLjt, (15)

with Kijt ≡
(

τijt

ĀitL
α2
it−1ūjtL

β2
jt−1

)1−σ

defined as a collection of terms that are either exoge-

nous, or predetermined from the perspective of period t.

2. Trade is balanced: That is, a location’s income is fully spent on goods from all locations,

or witLit =
∑

j Xjit. Using equation (4) this can be written as

w1−σ
it L

β1(1−σ)
it W σ−1

it =
∑
j

KjitL
α1(σ−1)
jt w1−σ

jt . (16)

3. A location’s population is equal to the population arriving in that location: That is,

Lit =
∑

j Ljit. From equation (9) this implies

LitW
−θ
it =

∑
j

µ−θjitΠ
−θ
jt Ljt−1. (17)

4. A location’s population in the previous period is equal to the number of people exiting

that location: That is, Lit−1 =
∑

j Lijt. From equation (9) this can be written as

Lit−1 =
∑
j

µ−θijtΠ
−θ
it Lit−1W

θ
jt,

which can then be written more compactly as

Πθ
it ≡

∑
j

µ−θijtW
θ
jt. (18)

Summarizing, the dynamic equilibrium can be represented as the system of 4 × N × T

equations (in equations 15-18) in 4×N × T unknowns, {Lit, wit,Wit,Πit}.6

This system of equations (15)-(18) comprises a high-dimensional nonlinear dynamic sys-

6When trade costs are symmetric (as will be assumed below) outward and inward goods market access
Pit and Pit are equal up to scale, allowing equations (15) and (16) to be combined into a single non-linear
equation, reducing the dimensionality of the system to 3 ×N × T equations and 3×N × T unknowns; see
Anderson and Van Wincoop (2003) and Allen and Arkolakis (2014).
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tem whose analysis can prove challenging. But this task is facilitated by the fact that the

system is a collection of additive power equations, where each of the endogenous variables

{Lit, wit,Wit,Πit} appears, on either the left-hand or right-hand side, to a particular fixed

power, with weights in the system given by an exogenous kernel term that comprises vari-

ables that are either exogenous or pre-determined from the perspective of period t (Kijt in

equations 15 and 16, and µ−θijt in equations 17 and 18). This means that the solution of each

cross-sectional system for t, given values of Kijt and hence solutions from the previous period

t− 1, can be solved using the methods in Allen, Arkolakis, and Li (2020). In this manner, a

dynamic path can be characterized by understanding a sequence of linked dynamic problems.

Towards this goal, we define the matrix

A (α, β) ≡

∣∣∣ θ(1+ασ+β(σ−1))−(σ−1)
σ+θ(1+(1−σ)α−βσ)

∣∣∣ ∣∣∣ (σ−1)(α+1)
σ+θ(1+(1−σ)α−βσ)

∣∣∣∣∣∣ θ/σ̃
σ+θ(1+(1−σ)α−βσ)

∣∣∣ ∣∣∣ θ(1−(σ−1)α−βσ)
σ+θ(1+(1−σ)α−βσ)

∣∣∣
 , (19)

where σ̃ ≡ σ−1
2σ−1

. This notation stresses the dependence of A (α, β) on α and β for reasons

that will be made clear below. Given this definition, the following result characterizes a

sufficient condition for existence and uniqueness for environments with symmetric trade

costs (and unrestricted migration costs) and arbitrary positive geographic fundamentals.

Proposition 1. For any initial population {Li0} and geography {Āit > 0, ūit > 0, τijt =

τjit, µijt > 0}, there exists an equilibrium. The equilibrium is unique if ρ (A (α1, β1)) ≤ 1,

where ρ(·) denotes the spectral radius (i.e. the largest eigenvalue in absolute value) operator.

Proof. See Section A.1.

This sufficient condition for uniqueness will be satisfied whenever α1 and β1 are sufficiently

small. Panel (a) of Figure 1 illustrates this condition for the values of σ and θ that we use in

our empirical calculations below. At these values, the sufficient condition of ρ (A (α1, β1)) ≤
1 is well approximated by the simple relation of α1 + β1 ≤ 0—that is, contemporaneous

agglomeration forces must simply be non-positive on net. Finally, we note that this result

concerning uniqueness of the dynamic equilibrium does not depend on the values of α2 and

β2, since the current generation takes Lit−1 as given.

To provide some intuition for the dynamic system, algebraic manipulations of equations

(15)-(18) when trade costs are symmetric imply that the equilibrium distribution of popula-

tion in any location and time can be written as

γ lnLit = Ct +σ ln ūit + (σ − 1) ln Āit− (2σ − 1) lnPit−σ ln Λit + (α2 (σ − 1) + β2σ) lnLi,t−1,

(20)
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where γ ≡ 1 + σ
θ
− (α1 (σ − 1) + β1σ) and Ct is a constant that ensures the aggregate labor

market clearing condition holds.

Equation (20) has three implications: first, as long as γ > 0 (which corresponds to the

case of our empirical estimates below), a greater density of residents can be found in any

location with high productivity Āit, high amenities ūit, high inward migration access (low

Λit), high access to imported goods (low Pit), and—if α2 (σ − 1)+β2σ > 0, so that historical

spillovers are positive—with greater population density in the previous period. Second, the

elasticities of the population to these characteristics are governed by the strength of γ, where

greater contemporaneous spillover elasticities α1 and β1 result in larger population responses.

Third, history—i.e. the distribution of the population in the previous period—only affects

the current population through the inward market access terms (Λit and Pit) and through

the direct impact on productivities and amenities from the historical spillover elasticities α2

and β2. Of course, while the first two determinants of population density in equation (20),

Āit and ūit, are exogenous in our model, the latter three determinants, Λit, Pit, and Li,t−1

are endogenous and are determined simultaneously through interactions with the endogenous

features in all other locations. It is the self-reinforcing potential of these interactions, both

over time and across space, that leads to the rich dynamics that we explore below.

2.3 Persistence and Path Dependence

We now turn to a characterization of the dynamic properties of the model, namely the

persistence of shocks to the economy and the possibility of multiple steady-states (i.e. the

potential for path dependence).

Persistence

Consider first the question of persistence: how long does a temporary shock to the economy

take to dissipate? To answer this question we define χx,t ≡ maxi xi,t/xi,t−1

mini xi,t/xi,t−1
to be the ratio of

the maximum to minimum change in variable xi,t across all locations. Note that χx,t ≥ 1

and is equal to one if and only if xi,t ∝ xi,t−1 for all i, i.e. the economy is on a balanced

growth path (or, in our case where aggregate population is fixed, a steady-state). As such, it

provides a convenient economy-wide measure of how far xi,t is from a steady-state. We can

then define the economy-wide persistence of variable xi,t as the effect of χx,t−1 on χx,t—that

is, how much deviations from the steady-state in period t − 1 affect deviations from the

steady-state in period t. The following proposition bounds the persistence of all endogenous

outcomes in the model in this manner:

Proposition 2. Consider any initial population {Li0} and time-invariant geography {Āi >
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0, ūi > 0, τij = τji, µij > 0}. Suppose that ρ (A (α1,, β1)) < 1 so that from Proposition 1 the

dynamic equilibrium is unique. Then the following relationship holds: lnχL,t

lnχW,t

lnχΠ,t

 ≤ ∣∣B−1
∣∣ (I− Ã (α1, β1)

)−1

C |B|

 lnχL,t−1

lnχW,t−1

lnχΠ,t−1

 , (21)

where Ã (α, β) ≡

A11 (α, β) 0 A12 (α, β)

A21 (α, β) 0 A22 (α, β)

0 1 0

, B ≡

σ̃ (1− α1 (σ − 1)− β1) σ̃σ 0

1 −θ 0

0 0 θ

, |B|

indicates the element-wise absolute value of B, and C is a 3-by-3 matrix whose first two

rows are strictly positive (with values that depend on the parameters α1, α2, β1, β2, σ and θ,

as fully defined in Section A.2) and whose third row consists entirely of zeroes.

Proof. See Section A.2.

Proposition 2 provides an upper bound on how much the endogenous variables Lit,Wit

and Πit change form period t − 1 to period t that depends on how much they changed

from period t − 2 to period t − 1 (while holding constant the underlying geography in

order to isolate the endogenous evolution of the economy). Loosely speaking, the propo-

sition states that the closer the spillover parametersare to the boundary at which unique-

ness can no longer be guaranteed, the greater the possibility of particularly long persis-

tence. To see this, note that as the spectral radius ρ (A (α1, β1)) approaches one from

below, the largest eigenvalue of (I−A (α1, β1))−1—and hence also the largest eigenvalue of

|B−1|
(
I− Ã (α1, β1)

)−1

C |B|—approaches infinity.7 Panel (b) of Figure 1 illustrates this re-

lationship by showing how the largest eigenvalue of |B−1|
(
I− Ã (α1, β1)

)−1

C |B| increases

as α1 and β1 approach this boundary (holding constant σ, θ, α2, and β2 at the values we

estimate in Section 3.3 below).

Path dependence

So far we have described the dynamic transition paths of this spatial economy. We now

discuss the steady-state(s) to which these paths may converge. Intuitively, if local agglom-

7Noting that the eigenvalues of A (α, β) are also eigenvalues of Ã (α, β), this can be seen from a simple

eigen-decomposition
(
I− Ã (α1, β1)

)−1

= V′ΛV where Λ is a diagonal matrix whose elements are the

eigenvalues (including 1
1−ρ(A(α1,β1)) , which approaches infinity as ρ (A (α1, β1)) approaches one from below)

and V is a 3× 3 matrix of the associated eigenvectors. Note that because A (α1, β1) is strictly positive and

hence ρ (A (α1, β1)) > 0, the largest eigenvalue of (I−A (α1, β1))
−1

always exceeds unity, which indicates
that long-lived persistence can never be ruled out.
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eration economies are strong enough then there could be multiple allocations at which the

economy would be in steady-state. Agents who come to reside in a location could find it

optimal, on average, to stay there; and yet the same could simultaneously be true for another

location, thanks to the reinforcing logic of local positive spillovers.

To evaluate this possibility we consider a version of the above economy but for which

the potentially time-varying fundamentals
{
Āit
}

and {ūit} and trade {τijt} and migration

{µijt} costs are constant over time at the values
{
Āi, ūi, τij, µij

}
. The steady-states of our

economy will therefore be a set of time-invariant endogenous variables that we denote by

{Li, wi,Wi,Πi}.8 The following result provides a sufficient condition for existence and unique-

ness of the steady-state of this economy (for arbitrary geographies with symmetric trade and

migration costs). It also shows how this is a maximal domain sufficient condition—the weak-

est condition one could impose whose result would be true for any geographic fundamentals.

Proposition 3. For any time-invariant geography
{
Āi > 0, ūi > 0, τij = τji, µij = µji

}
, there

exists a steady-state equilibrium and that equilibrium is unique if ρ (A (α1 + α2, β1 + β2)) ≤ 1.

Moreover, if ρ (A (α1 + α2, β1 + β2)) > 1, then there exist many geographies for which there

are multiple steady-states at each geography.

Proof. See Section A.3.

The condition for uniqueness of the steady-state in Proposition 3 is similar to that for

uniqueness of transition paths in Proposition 1. The only difference is that the latter con-

dition depends on the size of contemporaneous spillovers α1 and β1, whereas the former

condition depends on the size of total (that is, contemporaneous plus historical) spillovers

α1 + α2 and β1 + β2. This highlights the importance of the A (α, β) matrix defined in equa-

tion (19). The second part of Proposition 3 demonstrates that the sufficient condition for

uniqueness is necessary for certain geographies. Indeed, the proof of this proposition provides

a continuum of example geographies under which multiple steady-states arise.

Associated with each steady-state is a basin of attraction: a set of values of the initial

population distribution {Li0} for which the economy will converge to the steady-state in

question. When there are multiple steady-states, and hence multiple basins of attraction,

the eventual steady-state equilibrium of the economy will generically depend on its initial

population distribution. Such a situation offers the potential for path dependence: where

historical events that determine {Li0} can have permanent effects on the economy’s outcomes

since they select the basin of attraction in which populations are distributed at time 0, and

8Note that while population levels at each location Li are constant in steady-state, and hence net migration
flows are zero, gross migration flows are still positive in a steady-state equilibrium due to the churn induced
by the idiosyncratic locational preferences in equation (8).
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hence the eventual steady-state that is reached. Since the dynamic equilibria described in

equations (15)-(18) feature a historical dependence on the state variable {Lit} with only

one lag, this means that from the perspective of any date t the “history” of the system (all

exogenous and endogenous outcomes in the past) is fully characterized by {Li,t−1}. Hence,

observing the phenomenon that some event had a path-dependent impact hinges on whether

the event moved {Li,t−1} across the boundary from one basin of attraction to another. We

explore this feature in our counterfactual simulations in Section 4.

Combining Propositions 1 and 3, we see that the historical spillover parameters α2 and β2

play an important role in the study of path-dependent economies. Proposition 1 states that

when the contemporaneous spillover parameters α1 and β1 are low then dynamic equilibrium

paths will be unique. However, Proposition 3 states that when α1 + α2 and β1 + β2 are

high then steady-states are likely to be multiple. In this range of parameters (that is, with

relatively low α1 and β1 and yet relatively high α2 and β2) path dependence can occur and

yet be straightforward to study since the complications (for estimation, computation, and

interpretation of counterfactuals) of genuine equilibrium indeterminacy do not arise.

Steady-state welfare bounds

The possibility of multiple steady-states highlighted by Proposition 3 raises the question of

whether one steady-state is superior, in welfare terms, to others that could be reached from

different initial conditions. To describe this possibility requires defining a particular notion

of aggregate welfare. In the steady-state, it turns out that ex-ante welfare Ωi is equalized

across all locations:

Ωi = Ω ∀i ∈ {1, ..., N} ,

so that Ω becomes a natural measure of the aggregate efficiency of a particular steady-state

equilibrium.

Our penultimate proposition provides bounds on the aggregate welfare level Ω across

all steady-states that can arise for a given geography (with symmetric trade and migration

costs). Such bounds serve two purposes. First, they constrain the possible welfare impacts

of history in the long-run without having to explicitly calculate all possible steady-state

equilibria—a process that is infeasible in real-world settings with many locations and complex

geographies. Second, the bounds provide an insight into how features of the underlying

geography may exacerbate or attenuate the welfare impacts of history.

These bounds apply when the sum of all spillovers, ρ ≡ α1 + α2 + β1 + β2, is sufficiently

strong to possibly generate multiple steady-states, but not so strong as to result in complete

concentration of economic activity in one location. Under these conditions (which require
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the stated parameter restrictions), the following proposition provides a relationship between

the geography of the economy and the possible values that the steady-state welfare Ω can

take.

Proposition 4. Consider any time-invariant geography
{
Āi > 0, ūi > 0, τij = τji, µij = µji

}
and suppose that ρ > max

(
0, 1

θ
− 1

σ−1

)
and (1+(α1+α2)σ+(β1+β2)(σ−1))

(1−(α1+α2)(σ−1)−σ(β1+β2))
< 1. Then the equilib-

rium welfare values Ω across all steady-states are bounded by

Ω ≤ Ω ≤ Ω̄,

where the upper bound is given by

Ω̄ ≡
√
c1 × λ̄

1
θ
M × λ̄

1
σ−1

T ×max
i
Āiūi × L̄ρ−

1
θ ×N ε1 , (22)

the lower bound is given by

Ω ≡
√
c2 × λ

1
θ
M × λ

1
σ−1

T ×min
i
Āiūi × L̄ρ ×N−ε2 , (23)

λ̄M and λM are the maximal and minimal eigenvalues (in absolute value) of the migration

matrix M ≡
[
µ−θij
]
, λ̄T and λT are the maximal and minimal eigenvalues (in absolute value)

of the trade matrix T ≡
[
τ 1−σ
ij

]
, ε1 ≡ 1

2

(
1

σ−1
+ 1

θ

)
+ 1

{
ρ < 1

2(σ−1)

}
1−2(σ−1)ρ

2(σ−1)
> 0, ε2 ≡(

ρ+ 3
2(σ−1)

+ 1
2θ

)
> 0, and c1 and c2 are constants (defined in Section A.4) that bound the

variation in ex-post welfare Wi across locations (such that if θ →∞ and hence Wi is equalized

across all locations, then c1 = c2 = 1).

Proof. See Section A.5.

As the counterfactual simulations in Section 4 illustrate, when the presence of agglomer-

ation forces results in multiple steady-states, different initial conditions can lead to different

steady-states with different associated levels of aggregate welfare. Proposition 4 elucidates

the scope for such differences by providing upper and lower bounds to all levels of steady-state

welfare that are possible for a given geography.

The bounds in Proposition 4 also provide an intuitive explanation for how each component

of geography can matter for welfare. The upper bound is the product of six terms: (i) the

largest eigenvalue of the migration costs matrix (scaled by the migration elasticity), which

generally rises as migration costs fall; (ii) an analogous term for the trade costs matrix (scaled

by the trade elasticity); (iii) the innate productivity and amenity of the best location; (iv)

the total labor endowment, scaled by the strength of net agglomerative forces (ρ > 0) and
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tempered by diminished utility from people concentrating in locations for which they may

not have an idiosyncratic preference; (v) the total number of locations (scaled by locational

differentiation via trade and migration); and (vi) a term capturing the variation across

locations inWi, which is included for technical reasons that—loosely speaking—arise because,

ceteris paribus, individuals migrate to destinations with higher ex-post welfare but purchase

goods from destinations with lower ex-post welfare.

The lower bound includes similar terms to the upper bound but with the logic inverted:

the eigenvalues are now the smallest (in absolute value) of the trade and migration matrix,

the measure of the overall quality of the innate productivities and amenities places are those

of the worst location, and the number of locations is now scaled negatively by the strength

of the agglomerative forces.

Proposition 4 characterizes how geography can shape the extent to which history matters

for welfare in the long-run. To see this, define Ω̂PD as the ratio of the best to the worst

possible steady-state welfare, holding geography fixed. Proposition 4 immediately implies

Ω̂PD ≤ c

√
κ (M)

1
θ × κ (T)

1
σ−1 × maxi Āiūi

mini Āiūi
× L̄− 1

θ ×N ε1+ε2 , (24)

where κ (A) is the condition number of matrix A. Recall that the condition number of a

matrix measures how sensitive the solution to the linear equation Ax = b is to approximation

(where κ (A) = 1 only if A is a scalar multiple of a linear isometry and κ (A) =∞ only if A

is singular). Loosely speaking, equation (24) says that the welfare cost of history is bounded

above by the sensitivity of the matrices of migration and trade costs.

Finally, we note that the upper and lower bounds provided here may not necessarily be

tight for a given geography. This is clear from the nature of equation (24), which serves to

decompose the sources of welfare variation across multiple steady-states into separate terms

for each component of geography (i.e. trade costs, migration costs, local productivities and

amenities, aggregate labor endowments, and the number of locations). Steady-state welfare

levels are driven by the combination of each of these forces, and so no attempt to divide

them up into separate contributions, as in equation (24), could ever provide tight bounds in

general.9 Whether the bounds are quantitatively useful will of course depend on the context;

fortunately, we will see below that they are informative in our empirical setting.

9As an example, consider the case where migration is costless, i.e. µij = 1 for all i and j. In this case, the
steady-state of the model corresponds to the equilibrium of a large class of (static) spatial models, including,
for example, Helpman (1998), Allen and Arkolakis (2014), and Redding (2016). In this case, however, the

condition number κ (M)
1
θ is infinite, as the migration cost matrix is singular. However, it can be shown

using a similar (but simpler) argument following the proof of Proposition 4 that in this case, the bounds of
Proposition 4 still hold by excluding λ̄M and λM from the bound expressions.
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2.4 An example

To see the implications of Propositions 2, 3, and 4 more concretely, consider a simple economy

of three locations. Suppose, to begin, that these locations have identical and time-invariant

fundamentals
{
Āit, ūit, τijt, µijt

}
, and trade and migration costs are symmetric across loca-

tions.10 Figure 2 shows phase diagrams on the two-dimensional space of Lit shares in this

economy. The blue rays indicate one period of movement (so a ray’s length shows speed of

adjustment) in the direction towards each red dot and yellow stars denote steady-states.

We begin by illustrating how historical persistence is shaped by model parameters in panel

(a). The left diagram shows the phase diagram with strong congestion forces (α1 = −0.25)

so that the economy is far from the boundary of non-uniqueness. The right diagram, in

contrast, shows an economy with weak congestion forces (α1 = 0), moving the economy

closer to the boundary of non-uniqueness. As evinced by the shorter arrows, moving closer

to the boundary of non-unique dynamics increases persistence—all dynamics of adjustment

toward the unique steady-state will be slower—consistent with Proposition 2.

Panel (b) demonstrates how increasing the historical agglomeration forces creates the

possibility of path dependence (consistent with Proposition 3). In the left diagram (which is

identical to the right diagram of panel (a)), there are no historical agglomeration spillovers

(α2 = 0), and the economy converges everywhere to the unique steady-state with equal

population in all locations. In the right diagram, we increase the strength of historical

agglomeration forces (α2 = 0.25), resulting in a dramatic change in the qualitative dynamic

patterns. While the symmetric allocation remains a steady-state, it is no longer stable, and

now there are three stable steady-states with relatively concentrated population shares near

the corners of the simplex.11 Also apparent are the three basins of attraction around these

stable steady-states.

We turn next to the welfare consequences of path dependence, using panel (c) to illustrate.

In the left diagram (which is identical to the right diagram of panel (b)), all locations have

identical innate productivities and amenities; as a result, each of the three stable steady-

states delivers the same level of aggregate welfare Ω. The right diagram introduces asymmetry

in local geography by endowing location 1 with a slightly higher innate amenity (ū1 = 1.01,

ū2 = ū3 = 1). Consistent with Proposition 3, there remain multiple steady-states but now

aggregate welfare is higher in the steady-state that achieves concentration in location 1. This

is consistent with Proposition 4, which states that the upper bound on the welfare differences

10Throughout all economies in Figure 2, we set σ = 9, θ = 4, β1 = β2 = 0, Āi = 1 for all i, and µij = 1.6
for all i 6= j and µii = 1.

11In addition to the unstable steady-state in the center, there are three additional unstable steady-states
with equal concentration in two of the three locations (and almost no population in the third).
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across steady-states is increasing in the ratio of the product of innate productivities and

amenities across the best and worst locations. In this example the economy could start

with a bad set of initial conditions and end up in a dominated steady-state. Reassuringly,

however, the basin of attraction of the relatively good steady-state is larger than that of the

dominated ones. So, in the space of all possible initial conditions, good steady-states are

more likely to arise.

Finally, in panel (d) of Figure 2 we illustrate how the welfare consequences of path

dependence change with global geography (i.e. economy-wide trade and migration costs). In

the left diagram (which is identical to the right diagram of panel (c)), trade costs between

locations are high (τ = 1.1). In the right panel, we lower bilateral trade costs (τ = 1.08).

While reducing trade costs increases the aggregate welfare of the economy in all steady-

states, it does so disproportionately more for the “good” steady-state where all individuals

concentrate in location 1 than the steady-states with concentration in location 2 or 3. This

means that the welfare consequences of path dependence have increased. Since falling trade

costs are associated with an increase in the condition number of the trade cost matrix κ (T),

this is consistent with the predictions of Proposition 4.

3 Identification and Estimation

We now describe a procedure for mapping the above model into observable features of the

U.S. economy throughout the past two centuries. The goal is to estimate the elasticity

parameters (α1, β1, α2, β2, σ and θ) and geographic fundamentals
{
Āit, ūit, τijt, µijt

}
that

are critical for assessing the strength of persistence and likelihood of path dependence.

3.1 Data

Our quantification requires data on population Lit and per-capita nominal incomes wit. We

therefore build a dataset drawing on Manson, Schroeder, Van Riper, Ruggles, et al. (2017)

that tracks these two variables for subnational regions i of the coterminous U.S. for as long

a history as possible.

Starting with Lit, we obtain this series from decennial Census records of county-level

population (by age group) from 1800 onward. To distinguish between children and adults

in the model, we consider persons aged 25-74 as adults and work with 50-year steps (1800,

1850, 1900, 1950 and 2000) in order to avoid overlaps of these cohorts. Turning to wit, for

the years 1850-1950 we proxy for the relative amount of total income in any location, witLit,

by the estimated value of county-level agricultural and manufacturing output; for 2000 we
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use the per-capita income reported in the Census.12 As a result, we have proxies for Lit and

wit from 1850-2000 and for Lit in 1800 as well; this allows estimation to proceed from 1850

onwards.13

To account for county border changes over the years we work with the set of (the largest

possible) sub-county regions, each denoted by i, that can be mapped uniquely to every county

in our five years of data.14 In the end, our sample consists of 4,975 such sub-county regions

i, which we refer to as “locations” from now on.

Three other variables—proxies for migration flows, trade flows and productivities and

amenities—play an auxiliary role in our model estimation and are described further below.

3.2 Identification and Estimation

We now describe a three-step procedure that estimates the unknown parameters of the model

in Section 2. In a nutshell, the third step involves estimating a system of locational labor

supply and demand equations that represent an augmented version of the spatial equilibrium

model due to Rosen and Roback (Rosen, 1979; Roback, 1982); the first and second steps

simply prepare the ingredients necessary to proceed in this standard tradition.

The goal of the first step is to determine the level of the trade and migration cost terms,

raised to their respective elasticity exponents, that enter the equilibrium system of equa-

tions (15)-(18), objects that we define as Tijt ≡ τ 1−σ
ijt and Mijt ≡ µ−θijt .

15 We do this using

the available data on intranational trade Xijt and migration Lijt in our context: the 1997

Commodity Flow Survey (CFS), which measures trade flows; and Census data from 1850

onwards documenting the state of birth of each respondent (aged 25-74), which corresponds

to the timing of migration in our model.16 We then project these trade and migration cost

terms onto bilateral distance (denoted distij), in logs, as lnTijt = κ ln distij, for all t, and

12In practice, manufacturing output is not available for 1950 so we use the 1940 value of agricultural and
manufacturing output. Per-capita income is not readily available prior to 1980.

13Appendix Figures C.1 and C.2 present maps of Lit and wit in all years.
14For example, suppose that county “A” in 1900 splits into “A1” and “A2” by 1950, and then “A2” splits

into “A2(i)” and “A2(ii)” by 2000. The resulting sub-county regions that we track throughout would be “A1”,
“A2(i)” and “A2(ii)”. We then apportion the county-level information into each of the sub-country regions
on the basis of land area shares (and cluster regression standard errors at the county-year level).

15We note that only bilateral-specific elements of such terms matter in this system because origin- or
destination-specific components would be redundant conditional on the unrestricted components Ait and
uit. We therefore normalize any origin-time and destination-time components of Tijt and Mijt to one.

16We aggregate both trade and migration flows to the state-to-state level, as this is the greatest level
of disaggregation possible that is consistent between the two datasets. This aggregation introduces the
measurement errors εijt and νijt in equations (25) and (26), which we assume are uncorrelated with distance.
We note that Monte, Redding, and Rossi-Hansberg (2018) find the aggregation bias from applying gravity
regressions on the CFS data (at the CFS area level) to county level data to be small.
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lnMijt = λt ln distij.
17 Substituting these expressions into the gravity equations for trade

and migration flows, equations (6) and (10) respectively, we obtain

lnXijt = κ ln distij + γit + δjt + εijt, (25)

lnLijt = λt ln distij + ρit + πjt + νijt, (26)

where the terms γit, δjt, ρit, and πjt represent fixed effects.

Turning to our second step, we treat T̂ijt = (distij)
κ̂ and M̂ijt = (distij)

λ̂t as known from

step one. Then, re-writing the equilibrium system of equations (15)-(18) using equations (6)

and (10) yields, for all i:

P1−σ
it =

∑
j

T̂ijt × Yjt ×
(
P 1−σ
jt

)−1
, (27)

P 1−σ
it =

∑
j

T̂jit × Yjt ×
(
P1−σ
jt

)−1
, (28)

(
Λθ
it

)−1
=
∑
j

M̂jit × Ljt−1 ×
(
Πθ
jt

)−1
, (29)

Πθ
it =

∑
j

M̂ijt × Ljt × Λθ
jt. (30)

The following proposition shows that the four remaining unknown variables—comprising the

inward and outward trade and migration market access terms—in equations (15)-(18) are

identified (to scale), when raised to the exponents σ−1 or θ, because this system of equations

has a unique solution given data on Yit, Lit and estimates of T̂ijt and M̂ijt from step one.

Proposition 5. Given observed data on {Yit, Lit, Lit−1} and given values of
{
T̂ijt, M̂ijt

}
there exists a unique (up to scale) set of values of

{
Pσ−1
it , P σ−1

it ,Πθ
it,Λ

θ
it

}
that satisfy equations

(27)-(30).

Proof. See Section A.5.

Finally, we turn to the third step of our estimation procedure. Substituting the produc-

tivity spillover function from equation (1) into the outward trade market access Pit from

equation (7) and imposing Yit = witLit, we obtain the following (inverse) demand equation

17This assumes (due to the fact that the CFS is only available in recent years) that κ is constant over time,
as is broadly consistent with the patterns in international trade data surveyed by Disdier and Head (2008).
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for labor in location i:

lnwit =

[
α1

(
σ − 1

σ

)
− 1

σ

]
lnLit + α2

(
σ − 1

σ

)
lnLit−1 +

1

1− σ
lnP1−σ

it +
σ − 1

σ
lnAit.

(31)

In this expression, the inverse elasticity of labor demand combines the inverse elasticity of

demand for goods from a location, − 1
σ
, with the contemporaneous productivity spillovers α1;

this latter effect is moderated by σ−1
σ

because the location faces a downward-sloping demand

curve for its output. Notably, with strong positive spillovers the labor demand curve can

be upward-sloping. Also present in the demand equation are a set of shifters: (i) lagged

population Lit−1, which raises productivity if there are historical productivity externalities

(i.e. α2 > 0); (ii) the outward trade market access Pit, which allows for the labor demand

in location i to be high if its ability to sell goods to other locations is high; and (iii) the

exogenous (and unobserved) component of productivity, Ait. An important feature of this

estimating equation is that it describes a cross-sectional relationship that holds within any

equilibrium, so it can be used for valid point estimation even if the model’s parameters lie

in a region for which multiplicity is possible.

Similarly, substituting the amenity spillover function from equation (3) into the inward

migration market access Λit from equation (11) and using Wit ≡ wit
Pit
uit, we obtain the fol-

lowing (inverse) supply equation for labor in location i:

lnwit =

(
1

θ
− β1

)
lnLit + (−β2) lnLit−1 +

1

θ
ln Λθ

it +
1

1− σ
lnP 1−σ

it − lnuit. (32)

The inverse elasticity of labor supply combines the locational utility heterogeneity dispersion

θ with the contemporaneous productivity spillovers β1; analogously to the demand case, the

elasticity of labor supply can be negative if such spillovers are positive and large. Shifters of

the inverse labor supply curve comprise: (i) lagged population in the location Lit−1, which

matters to the extent that historical amenity externalities (i.e. β2 6= 0) exist; (ii) the con-

sumer cost-of-living Pit, which increases the nominal wage wit that is required for a given

amount of mobile workers to be willing to live in location i; (iii) the inbound supply of po-

tential migrants from other nearby locations as captured by Λit; and (iv) the exogenous (and

unobserved) component of location i′s amenity, uit. Again, this equation allows parameter

estimation to proceed even though equilibria may be multiple.

The locational demand-supply system in equations (31) and (32) generalizes that in the

Rosen-Roback framework (c.f. Glaeser and Gottlieb 2009; Kline and Moretti 2014; Hsieh

and Moretti 2019) in two senses. First, it relaxes the assumption that locations produce a

homogenous and freely traded product (i.e. that σ is infinite and τijt = 1). Second, it relaxes

24



the assumption that all workers have identical preferences across locations and face no costs

of migrating (i.e. that θ is infinite, and µijt = 1). This added flexibility necessitates the

inclusion of the market access terms P1−σ
it , P 1−σ

it and Λθ
it as demand and supply shifters, as

recovered in step two.

As with any demand-supply system, OLS estimates of the parameters in equations (31)

and (32) would typically suffer from simultaneity bias. We therefore use an instrumental

variable (IV) procedure that exploits the model’s feature that exogenous shifters of amenities

(components of uit) would be valid instruments for estimating the demand equation (31)

and exogenous shifters of productivities (components of Ait) would be valid instruments for

estimating the supply equation (32) as long as those shifters are orthogonal to each other. In

practice, we include location and region-year fixed effects in these IV specifications so that

valid instruments for the case of the demand equation (31) are those that capture changes in

amenities over time (within region) but do not relate to changes in the exogenous component

of productivity.18 Analogously, the supply equation (32) requires instruments derived from

changes in productivity that are uncorrelated with changes in amenities. Given the 50-

year time intervals that we use for estimation, these instruments must derive from relatively

long-run changes to the U.S. economy.

For the demand equation, we follow Barreca, Clay, Deschenes, Greenstone, and Shapiro

(2016) who note that technological advances like air conditioning and more effective heating

systems have made extreme hot or cold climates more bearable (delivering greater amenity

value) throughout our sample period. Accordingly, our IVs consist of a linear time trend

interacted with the average maximum temperature in the warmest month and the average

minimum temperature in the coldest month (and their squared values to allow for nonlin-

earities) in each location. We obtain such data from WorldClim.org.

For the labor supply equation instruments, we leverage two major changes in U.S. agri-

culture over the past 200 years. The first is the increased use of more intensive cultivation

practices (e.g. mechanization, fertilizer, genetic modification of seeds, etc), which raised land

productivity. Following Bustos, Caprettini, and Ponticelli (2016), we measure the extent to

which locations could take advantage of this higher-intensity cultivation as the differential

potential yield under low and high intensity cultivation, according to the FAO-GAEZ agro-

climatic model of crop suitability (Fischer, Nachtergaele, Prieler, Van Velthuizen, Verelst,

and Wiberg, 2008). Our first IV interacts this differential yield for corn, the dominant crop

throughout our period, with a linear time trend.19

18To construct regions, we draw a box around the continental U.S. (in the Mercator projection) and,
beginning from the southwest corner of the box, we overlay squares on top of the box, each of which has an
area equal to one tenth of the area of the box. This partitions the continental U.S. into 14 different regions.

19To allow for within-location heterogeneity in agroclimatic suitability, we include both the mean differ-
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The second major change that we exploit is a shift in world demand that has altered

which crops are grown in the U.S., most notably soy.20 To proxy for which locations saw

the greatest gain in (revenue) productivity from this shift, we use the FAO-GAEZ predicted

difference in potential yield between soy and wheat (a crop for which demand has remained

relatively constant over time) and interact this with a linear time trend.21 Together, these

two sets of supply-equation instruments leverage heterogeneity in geographical exposure to

both within-crop and across-crop changes among the three most important food crops for

U.S. agriculture.

Finally, when estimating the demand equation (31) we use the climate amenity-based

IVs, but additionally control for the agricultural productivity variables (in order to reduce

residual variation and the risk that our amenity-based IVs are correlated with unobserved

productivity variation). Analogously, our estimation of the supply equation (32) includes

controls for the climate amenity variables.

To conclude the three-step procedure we note that, conditional on obtaining consistent

estimates of the elasticity parameters (α1, β1, α2, β2, σ and θ), equations (31) and (32)

allow recovery of the geographic fundamentals
{
Āit, ūit

}
as well. Combined with the earlier

estimates of {Tijt,Mijt} from step two all model parameters are thereby identified.

3.3 Estimation Results

We begin with estimates from the trade and migration gravity equations in step one, as

reported in Table 1. As is standard, our estimate of the elasticity of trade flows with respect

to distance, in column 1, is close to minus one: in particular, we obtain κ̂ = −1.35 (with

a standard error of 0.06 based on two-way clustering on origin and destination location).22

Table 1 also reports estimates of the migration-distance elasticity for each year 1850-2000 in

columns 2 through 5. The estimates λ̂t range from −1.51 to −2.16, with no clear trend over

the 150 years spanned.23

ential yield for corn and the standard deviation of the differential yield as instruments.
20Virtually absent in 1900, soy trailed only corn in terms of both value and acreage in 2000. Roth (2018),

for example, argues that much of this rise is due to rising demand for U.S. exports of soy to Asia.
21In 1909, wheat was cultivated on 14.7% of harvested acres allocated to principal crops; in 2000, the

figure was 17.2%; see USDA (2003). In practice, we use the high- and low-intensity scenarios for soy and
wheat, respectively, to reflect the fact that the former was grown predominantly in a more technologically
advanced era. As with the first labor supply instrument, we include both the mean soy-wheat differences
and the standard deviation of the differences as instruments.

22In comparison, Hillberry and Hummels (2008) estimate a distance elasticity equal to −1.31 at a distance
of one mile and −0.91 at the mean distance of 523 miles; Dingel (2017) estimates an elasticity of −0.95.

23Allen and Arkolakis (2018) calculate the migration distance elasticity for the U.S. for all decennial
censuses from 1850-2000 and find a similar similar range (−1.3 to −2.3). Estimated within-country migration
distance elasticities are of similar magnitudes in other contexts—for example, −0.7 in Indonesia (Bryan and
Morten, 2019) and −1.5 in India (Imbert and Papp, 2020).
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Turning to step three, the parameter values implied by our 2SLS estimates of the la-

bor demand equation (31) are reported in Table 2.24 Column 1 begins with a version that

estimates all three parameters (α1, α2 and σ) of this equation. It is apparent that these pa-

rameters are imprecisely estimated in this specification—the 95% confidence intervals for all

three parameters span a wide range of implausible values, such as a negative value for σ and

an unreasonably large agglomeration elasticity α1. It is unsurprising that these estimates

suffer from severe multicollinearity given that the regressor lnP1−σ
it is a spatial aggregation

with (distance-based) weights that are smooth over space. We therefore, in columns 2 and

3, estimate equation (31) after imposing values of σ = 5 and σ = 9 that reflect typical

estimates of the trade elasticity (equal to σ−1 here).25 The resulting estimates of α1 and α2

are now considerably more precisely estimated, displaying substantial contemporaneous ag-

glomeration spillovers of magnitudes similar to those previously estimated, and more modest

historical spillovers.26 In column 3 (with σ = 9), we estimate α̂1 = 0.11 (SE = 0.034) and

α̂2 = 0.04 (SE = 0.030), and treat this as our preferred set of estimates in what follows.27

Table 3 displays analogous 2SLS estimates of the parameters in the locational labor

supply equation (32), beginning with all four parameters (β1, β2, θ and σ) in column 1. For

reasons that are similar to the case of Table 2 described above—though now exacerbated due

to the presence of two market access terms, ln Λθ
it and lnP 1−σ

it —these estimates also suffer

from multicollinearity and hence lack precision. The remaining columns therefore focus on

obtaining estimates of β1 and β2 under assumed values for θ and σ that relate to prior work;

in particular, we consider the four combinations obtained from the same two values of σ as

in Table 2 and the values θ = 2 and θ = 4.28 Regardless of the assumed values, we estimate

24In Tables 2 and 3, the reported standard errors are two-way clustered at the location level and at the
county-year level. First-stage estimates are presented in Appendix Table C.1 and Appendix Figure C.3 maps
the spatial patterns of the predicted change in population from the first-stage regressions.

25For example, Eaton and Kortum (2002) estimate a trade elasticity using international trade flows between
3.60 and 12.86 (with a preferred estimate of 8.28) depending on the method, and Simonovska and Waugh
(2014) estimate this elasticity to be 4. Donaldson and Hornbeck (2016) estimate a trade elasticity of 8.22
when focusing on intranational trade in the U.S. during the late 19th century. Given the similar setting, we
therefore use σ = 9 as our preferred estimate in what follows.

26In reviews of the literature, Rosenthal and Strange (2004) and Combes and Gobillon (2015) conclude
that contemporaneous agglomeration elasticities at the city level are likely between 0.03 and 0.08. Roca
and Puga (2017) find the combined effect of the immediate productivity gains and the subsequent seven
years of experience from moving to a city to imply an agglomeration effect of 0.05. Closer to our setting,
by studying how U.S. counties responded to the Tennessee Valley Authority investments, Kline and Moretti
(2014) estimate a contemporaneous (but manufacturing sector) agglomeration elasticity of 0.2. And Bleakley
and Lin (2012) estimate a long-run agglomeration elasticity (i.e. α1 +α2) of 0.09 in their study of persistent
clustering around portage sites in the U.S..

27As reported in Table 2, the minimal first-stage Sanderson and Windmeijer (2016) F-statistic (taken
across the two first-stage equations) in this regression is 75.9, indicating that finite-sample 2SLS bias is
unlikely.

28The closest estimate to the fifty-year bilateral migration elasticity in our model of which we are aware
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large positive historical amenity spillovers β2 consistent with the microfoundations discussed

in Section 2.1 where previous durable investments in housing (or other amenity features

such as public spaces) increase the amenity value of residing in a location. In contrast, we

find that contemporaneous amenity spillovers β1 are smaller and sometimes negative, albeit

imprecisely estimated. In our preferred specification, with σ = 9 and θ = 4, we estimate

β̂1 = −0.15 (SE = 0.279) and β̂2 = 0.33 (SE = 0.179).29

What do these estimated spillovers imply for the degree of persistence and the possibility

of path dependence? To answer this, Figure 3 takes our preferred estimates from Tables 2

and 3 and illustrates their position (and their 95% confidence intervals) in the context of the

parameter thresholds identified in Propositions 1, 2, and 3. The red star indicates the location

of the contemporaneous spillover estimates, α̂1 and β̂1. From Proposition 1, its location in

the yellow region indicates that the dynamic path of the economy is unique—i.e. given any

initial distribution of population {Li0} and known evolution of geography {τijt, µijt, Ait, uit},
we can uniquely determine (and straightforwardly calculate) the evolution of the economy.

However, from Proposition 2, the red star’s location near the boundary of uniqueness and

non-uniqueness suggests the possibility of very persistent historical shocks. Finally, the green

star indicates the location of the estimated combination of contemporaneous and historical

spillovers, α̂1 + α̂2 and β̂1 + β̂2. From Proposition 3, its location in the blue non-unique region

suggests the possibility of multiple steady-states of the economy and hence the possibility of

path dependence.

4 Does History Matter for the U.S. Spatial Economy?

We have just seen in Figure 3 how the model from Section 2, estimated on U.S. data from

1800-2000 as in Section 3, features unique equilibria, but nevertheless the distinct possibility

of both long-lived persistence and genuine path dependence. In this section we proceed to

quantify the extent of these phenomena using a decomposition (Section 4.1), a simulation of

counterfactual histories (Section 4.2), and an analysis of welfare bounds (Section 4.3).

is due to Monte, Redding, and Rossi-Hansberg (2018), who estimate a location choice elasticity across U.S.
counties of 3.30, albeit in a static framework abstracting from bilateral migration costs. We therefore choose
the higher value, θ = 4, as our preferred estimate in what follows, but also examine the lower value of θ = 2
in order to approach shorter-horizon estimates (such as that from Caliendo, Dvorkin, and Parro (2019) on
U.S. states, with an implied annual elasticity of 0.5).

29As reported in Table 2, the minimal (across equations) first-stage Sanderson-Windmeijer F-statistic in
this regression is 7.4, indicating the potential for finite-sample 2SLS bias. However, the estimates of β1 and
β2 based on LIML are both larger in absolute value and lie in the same regions of the parameter space shown
in Figure 3 as our preferred estimates.
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4.1 How much can history explain U.S. economic geography?

We begin with a model-based decomposition that can be used to quantify the extent to which

spatial inequalities across the U.S. exist because of unequal historical conditions. The model

identity in equation (20) implies that, for any year T , we can write

lnLiT = C + φT0 lnLi0︸ ︷︷ ︸
history

+
1

γ

T∑
s=1

φT−s1 ln
(
ūσisĀ

σ−1
is

)
︸ ︷︷ ︸

path of fundamentals

+
1

γ

T∑
s=1

φT−s1 ln
(
Λσ
isP

1−2σ
is

)
︸ ︷︷ ︸

path of market access

, (33)

where, as before, γ ≡ 1 + σ
θ
− (α1 (σ − 1) + β1σ), and now φ1 ≡ α2 (σ − 1) + β2σ and

φ0 ≡ φ1/γ.

This expression allows us to decompose the variation in year-T population levels across

locations i into contributions deriving from three terms involving variation in: (i) exogenous

historical conditions Li0 at any “initial” date (i.e. t = 0) in the past; (ii) paths of exogenous

productivities Āit and amenities ūit in these locations; and (iii) paths of endogenous market

access for trade Pit and migration Λit. While it is clear that term (i) reflects “history” and

term (ii) reflects geography “fundamentals”, term (iii) involves a combination of history and

fundamentals that does not linearly decompose further. We therefore view term (i) as a

lower bound on the role of history in this decomposition.

Panel (a) of Figure 4 presents the results of this exercise. We set T to be the year 2000

and consider initial years t = 0 ranging from 1800-1950. In each case we report the variance

(across the N locations) of each of the three terms in equation (33) divided by the variance

of lnLiT . History plays a large role. For example, historical conditions in 1800 account for at

least 32.6% of the variation in (log) population in 2000, rising to 56.6% in 1850 and 63.9% in

1900. To put these magnitudes in context, we note that equation (33) is the (T − 1)-period

iterated version of an AR(1) process with parameter φ0, augmented by the spatial interactions

arising in the market access term. Our parameter estimates imply that φ̂0 = 0.90, which

is indicative of slow convergence purely because of the logic of agglomeration (since φ0 is a

function of the spillover elasticities and the trade and migration elasticities, not migration

costs).

We repeat this calculation using an analogous expression for ex-post welfare Wit in Panel

(b) of Figure 4.30 While history matters for the distribution of welfare, it matters much

30An analagous derivation to equation (33) relying on equation (11) yields the following expression:

lnWiT = C − φT0
θ

lnLi0︸ ︷︷ ︸
history

− 1

θγ

T∑
s=1

φT−s1 ln
(
ūσisĀ

σ−1
is

)
︸ ︷︷ ︸

path of fundamentals

+ ln ΛiT −
1

θγ

T∑
s=1

φT−s1 ln
(
ΛσisP

1−2σ
is

)
︸ ︷︷ ︸

path of market access

.
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less than it does for the distribution of population: the lower bound on the extent to which

historical conditions in 1800 account for variation in (log) ex-post welfare in 2000 is 4.0%,

though this rises to 26.5% and 54.7% in the case of the more recent historical conditions in

1850 and 1900, respectively. That history seems to matter more for the distribution of where

people live than for their welfare—a consistent theme of our analysis in this section—suggests

that historical differences in welfare are partially arbitraged away both contemporaneously

through the movement of goods and over time by the movement of people.

4.2 Persistence in the U.S. spatial economy

The results in Section 4.1 suggest that unequal historical conditions play a large role in ac-

counting for spatial inequalities in the U.S. economy today. But a decomposition exercise like

this one is unable to answer questions about the causal impact of historical conditions—how

different would the spatial economy look today if historical conditions had been different?

To answer this question, we need to compare actual historical conditions to counterfactual

alternatives. One could imagine many counterfactual histories of interest, but we seek partic-

ular inspiration from the vagaries of industrial success that struck America’s communities at

the turn of the 20th century. This period—known variously as the Technological Revolution

or the Second Industrial Revolution—was a period of rapid productivity growth across a

number of different industries due to wide-spread adoption of technological innovations such

as the internal combustion engine and electrification.31

Crucially for us, the adoption of these innovations varied across locations within the

United States, often for reasons that (in hindsight) can be partially attributed to historical

“luck”. For example, Detroit’s rise as the “Motor City” plausibly owes something to the fact

that Henry Ford happened to be born on a nearby farm. Or perhaps Buffalo became the

“City of Light”, in more than just a name, because it was chosen to host the Pan-American

Exposition at a time (1901) when Thomas Edison desired to show off his newly invented AC

power by adorning Buffalo’s Exposition buildings with light bulbs.32

Examples like these illustrate how relatively similar locations may (or may not) have been

the fortunate recipients of positive productivity shocks in a time of technological change. To

study the consequence of such hypotheticals, we generate a set of counterfactual histories in

which productivity fundamentals are randomly swapped between pairs of similar locations.

Note that a similar decomposition is not possible for ex-ante welfare Ωi,t, as from equation (14) it can be
written solely as a function of inward and outward market access.

31See e.g. Landes (2003).
32Unfortunately, the Exposition’s interiors were less well-lit. To illuminate the operating table used (un-

successfully) to remove a bullet from President McKinley, who was shot at the event, the doctor had to rely
on a mirror to reflect the rays of the setting sun (Leech, 1959, p. 596). He died of gangrene a week later.
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For example, what if Cincinnati (with a population of 330,000 in 1900) had been chosen

instead of Buffalo (population 350,000 in 1900) for the site of the Pan-American Exposition?

To operationalize this idea, albeit in an abstract manner, we carry out a set of simula-

tions, each indexed by b, as follows. First, we rank all locations in terms of their observed

Li,1900. Second, we form pairs p of locations based on their nearest neighbor in this ranked

distribution, starting at the top; for example, Erie County, NY (home to Buffalo) and Hamil-

ton County, OH (home to Cincinnati) occupy ranks 11 and 12 in the distribution.33 Third,

in simulation b we draw (independently) for each pair p random variable W
(b)
p that is dis-

tributed Bernoulli(1/2). When W
(b)
p = 1, we swap the values of the fundamental productivity

in 1900 Ai,1900 among the two locations within pair p; and when W
(b)
p = 0 we leave the pair

unchanged. Fourth, we then simulate the model forwards from 1900 onward holding fixed

all other exogenous locational characteristics in the model (i.e. Li,1850, ui,1900, and the en-

tire path of Ait and uit for t > 1900) at their values estimated in Section 3.3 (and with

Ait = Ai,2000 and ui,t = ui,2000 held fixed for all t > 2000). This generates a stream of

counterfactual predictions for all the endogenous variables in the model (which we denote as

L
(b)
it ,W

(b)
it ,Ω

(b)
it , etc.) at all dates t ≥ 1900.

We then repeat these four steps for all B = 100 simulations. We will also draw on an

additional (B + 1)th simulation (the output of which we label as, for example, L
(F )
it , for

“factual”) in which there are no swaps at all. This corresponds, for t ≤ 2000, to the factual

path taken by variables such as Lit in the data. For years t > 2000 this exercise therefore

simulates forward a model that (by design) fits the past data perfectly. We simulate each

counterfactual history (and the factual history) forward 30 generations past the year 2000,

to the year 3500. While these projections are obviously heroic, such a long horizon turns out

to be necessary in order to capture the full scope of historical persistence in this model.

To summarize, each of these “swap” counterfactual history simulations holds everything

in the model constant apart from the fundamental sources of productivity in 1900, Ai,1900,

and even the Ai,1900 distribution is held exactly constant (not just on aggregate but also

across the N/2 pairs of locations). The only thing being perturbed in any counterfactual

history is the within-pair assignment of productivity in 1900 among pairs of locations that

are as close as possible to one another in terms of their 1900 populations.

33Other examples of pairs include the counties that are home to Worcester and San Francisco (ranks 17
and 18), Providence and Baltimore (ranks 21 and 22), New Haven and New Orleans (ranks 23 and 24), and
Louisville and Minneapolis (ranks 27 and 28). Due to the odd number of locations, that with the smallest
1900 population—a subset of Craig County, VA—is without a partner. We therefore leave its productivity
unchanged in every simulation.
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4.2.1 Local persistence elasticities

We begin by quantifying the local impact of these swap counterfactuals. While the counter-

factual changes are to productivities Ai,1900, a useful way to summarize the effect of these

shocks can be obtained by noting that, from the perspective of any year t > 1900, the only

impact of these shocks is to alter {Li,1900}, the initial conditions of the model’s only state

variable. We therefore study the impact of a change in such initial conditions, rather than

the underlying shocks to Ai,1900 that altered these initial conditions, as follows.

For any generic “outcome” of interest, Oit, we use the data generated by the model

simulations in order to estimate the regression

lnO
(b)
it = δOit + ηOit lnL

(b)
i,1900 + ε

O(b)
it (34)

separately for each location i and time period t > 1900. Our interest lies in the local per-

sistence elasticity (for outcome O), denoted by ηOit . This elasticity measures the average

relationship, across the B simulations, in location i between that location’s historical popu-

lation L
(b)
i,1900 and its value for the outcome O

(b)
it in some later period t. The error term ε

O(b)
it

in equation (34) is almost surely correlated with L
(b)
i,1900, for any outcome—as, for example,

equation (20) makes clear when Oit represents population. But lnA
(b)

i,1900 can serve as an

excludable IV for consistent estimation of ηOit given that it is randomly assigned (by design).

Figure 5 reports the distribution (across locations) of the estimated values of the local

persistence elasticity for population η̂Lit that corresponds to each of the years t = 1950-3500.34

For example, the median elasticity η̂Li,2000, 100 years after our simulated shocks, is 0.89, and

it remains high at 0.45 after 500 years. While there is considerable heterogeneity across

locations, even the lowest inter-quartile range value is 0.80 at t = 2000. This suggests that in

a dynamic economic geography model like the one developed here, it should be considered the

norm, rather than the exception, to observe that an event that raises a location’s population

at a point in time leads to centuries-long economic persistence.

Also shown in Figure 5 is the distribution of the elasticities η̂Wit , where the outcome Oit

is ex-post welfare W
(b)
it . As expected, the local welfare elasticities η̂Wit are considerably lower

than the local population elasticities η̂Lit—because of both trade and migration, the welfare

of a location draws on both local and nearby geographical advantage, so the local impact of

local shocks is muted by spatial interactions and arbitrage. Still, the median elasticity after

100 years is 0.21 and it is not much lower, at 0.11, after 500 years.

34To account for the possibility that the elasticities η̂Oit are estimated with error, in this figure we weight
each location by the inverse of the square of the estimated standard error of its estimate. The instruments
are typically very strong, with a mean (median) first stage F-statistic of 492 (166) and 85% of locations’
F-statistics exceeding 10.
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Finally, Figure 5 also reports the corresponding elasticities for ex-ante welfare, Ωit. Even

one period after the shock, the local elasticities η̂Ω
it are all essentially zero. This means

that while local shocks cast a long shadow over many characteristics (populations, prices,

wages, productivity, amenities) of the local economy, they have little bearing on the welfare

of children who are born in such locations because those children always have the option to

migrate outwards. However, while local shocks have no impact on the spatial distribution of

the next generation’s welfare, this is not to say that such shocks have no aggregate welfare

consequences; indeed, as we will see below, we find precisely the opposite.

4.2.2 Fragility and resilience

As we have seen, local productivity swaps leave a sizable impact on their local economies,

even many centuries after the shocks occurred. One consequence of this is that we should

expect variability of local outcomes across simulations. But which locations tend to be

fragile in the face of these shocks and which tend to be resilient? To explore this for the

year 2000, Figure 6 shows a plot of the standard deviation of lnL
(b)
i,2000 (as well as lnW

(b)
i,2000

and ln Ω
(b)
i,2000) across the B simulations against the factual population in 2000, L

(F )
i,2000. We

see that no location is immune to these shocks (the minimum standard deviation of log 2000

population is 1.12), not even those in the largest locations (the average standard deviation

among the year 2000’s 25 largest locations is 1.99). And many smaller locations see extremely

large variability across our simulations.35

As expected, similar patterns are on display for the two welfare measures, lnW
(b)
i,2000

and ln Ω
(b)
i,2000, but in a substantially dampened fashion (especially for Ωit) throughout the

distribution. However, even ex-ante welfare is hardly impervious to 100 year-old shocks; for

example, the largest 25 locations have an average standard deviation of ln Ω
(b)
i,2000 of 0.25.

4.2.3 Spatial configuration

Having seen that local historical shocks leave long-lasting impacts on individual locations, a

natural question is whether these impacts can be so large as to re-orient the spatial config-

uration of the entire economy.

To investigate this, we examine the correlation of the entire distribution of population

across counterfactual historical simulations. For any pair of simulations, b and b′, and any

year t, we calculate χLbb′,t ≡ corr(lnL
(b)
it , lnL

(b′)
it ) as a way of asking how similar the spatial

distribution of (log) population is across these two simulations. We do this using all pairs of

35This tendency for smaller locations to have relatively greater variability across simulations, however,
does not account for the cross-location heterogeneity of η̂Li,2000 seen in Figure 5; the correlation between

η̂Li,2000 and lnL
(F )
i,2000 is −0.06.
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the 100 simulations of counterfactual history, and also that corresponding to actual history

(i.e. for lnL
(F )
it ), so there are 5, 050 (i.e. 101×100

2
) values of χLbb′,t for each year.

Figure 7 reports the interquartile spread of this statistic across those 5, 050 values. Prior

to the onset of the shocks in 1850 this correlation (i.e. χLbb′,1850) is equal to one, of course.

Upon the realization of the shocks in 1900, it declines to 0.79 and continues to fall, reaching

0.76 by the year 2000 and 0.70 in the year 3500. At the same time, the spread of correlations

across simulation pairs rises, slowly, such that by the year 3500, 25% of simulation pairs have

a correlation less than 0.52, whereas 25% of simulation pairs have a correlation greater than

0.91. A similar pattern is seen in Figure 7 for the cross-simulation correlation of ex-post and

ex-ante welfare, χWbb′,t and χΩ
bb′,t.

36

Summarizing, while Figure 5 documents that historical shocks can have extremely per-

sistent effects on the local economy, Figure 7 points to the possibility of something stronger:

long-run outcomes that remain permanently distinct across simulations. This is indicative

of path dependence, as we now discuss.

4.3 Path Dependence in the U.S. Spatial Economy

Following Section 2.3, we now focus on the behavior of locations’ ex-ante welfare, Ωit, because

they will satisfy Ωit = Ω once any steady-state has been reached. Figure 8 plots the path

of population-weighted ln Ω
(b)
it over time for each simulation b (the various colors used to

illustrate these paths reflect the spatial orientations underlying them, as we discuss shortly),

as well as that for the projected factual path ln Ω
(F )
it in light green.37 Recall that all of our 101

simulated economies feature exactly the same paths of fundamentals from t = 1950 onward,

so all heterogeneity across these simulations after 1900 is purely the result of heterogeneity

in the state variable {L(b)
i,1900} induced by the simulated productivity swaps in 1900.

Several features of Figure 8 stand out. First, aggregate welfare in each simulation tends

to rise as the pursuit of more attractive locations by mobile children entering adulthood

pushes the population distribution closer and closer to a more efficient allocation of resources

(even though it is certainly not guaranteed to do so). Second, this process stabilizes in most

simulations over the first 300-400 years, with relatively small adjustments over the 3,000 years

that follow. Third, these small ensuing adjustments do lead to genuine steady-states in a

36Unlike population and ex-post welfare, the median ex-ante welfare correlations χΩ
bb′,t do increase from

their nadir of 0.20 in 2200 to 0.58 in 3500; this increase is due in part to the fact that ex-ante welfare is
equalized across all locations in the steady-state and we set the correlation between any pair in which at
least one is in the steady-state to one (as it would be otherwise undefined).

37As our identification procedure recovers productivity and amenity levels to scale, to compare recovered
geographies across years, we choose the scale such that the factual welfare in years 1900 and 1950 have the
same mean as in the year 2000. No choice of scale is necessary for subsequent years, as the geography remains
constant at its year 2000 values.
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number of cases (illustrated with yellow dots) but in many other cases the small adjustments

are still occurring, albeit at an exceedingly slow pace.38 Fourth, even though there is broad

convergence of many paths to the same or similar steady-states, this convergence is by no

means uniform, and periods of temporary divergence are common. Fifth, many of these

simulations stabilize at differing levels of aggregate welfare, which implies that this model

displays not only path dependence but path dependence with aggregate welfare consequences.

Finally, these aggregate welfare consequences can be substantial. For example, the welfare

gap across the three steady-states shown is 1.29 log integers—which, for context, is equivalent

to 516 years of growth at 0.25% per annum. And while the factual economy ends up closer

(in welfare terms) to the best steady-state than to the worst by the year 3500, it is still

poorer than the best steady-state by an amount that corresponds to 181 years of foregone

0.25% annual growth.

Put together, these findings imply that the relatively small swap counterfactual shocks

in our simulations are large enough to tip the model economy towards different steady-

states, implying that the basins of attraction of these steady-states are also relatively small.

One might therefore conjecture that larger shocks in 1900 could have led to even greater

divergence in aggregate welfare. This is where the analytical bounds on Ω({Li0}) obtained

in Proposition 4 prove useful. Figure 8 also plots the upper bound Ω̄ according to equation

(22) as a dashed red line. While none of our simulations reaches this upper bound, the

cross-simulation variation is considerably larger than the gap between the best steady-state

and Ω̄.

However, the lower bound Ω from equation (23), which is calculated in Table 4, implies

that we cannot rule out the presence of alternative 1900 population distributions that would

have led this same post-1950 economy towards considerably (many orders of magnitude)

lower aggregate welfare. The factual 1900 distribution of population {Li,1900} was hence

potentially quite close, in this welfare sense, to the basins of attraction of relatively good

steady-states, when compared to what might have been. This is consistent with the finding

in Section 2.4 that the basins of attraction of good steady-states tend to be larger than those

of dominated steady-states.

Table 4 also reports the five components of the upper and lower bounds, Ω̄ and Ω, as

derived in Proposition 4. All of these components allow substantial latitude for historical

conditions to matter because their individual contributions to the ratio of upper-to-lower

bounds are each large. For example, one might have conjectured that the mere presence

38For us to classify a simulation as being in a steady-state, we require that Ωit is equalized across all
locations to numerical precision. By this definition, 11 of 101 simulations have reached a steady-state by
the year 3500. Of the remaining 90 simulations, the median standard deviation of ln Ωit was 0.09, with an
interquartile range of 0.05 and 0.15, and none of the 90 have a standard deviation of ln Ωit less than 0.001.
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of large agglomeration spillover elasticities in each location would mean that the aggregate

welfare differences coming from concentration per se would be larger than any effects arising

from where that concentration occurs. But this conjecture turns out to be incomplete since

the effects of concentrating in superior locations (with better migration costs, trade costs,

or geographic fundamentals shown in columns 2-4, respectively) are similar in magnitude to

that from overall scale (in column 5).

Finally, the presence of multiple steady-states begs the question of what these various

configurations look like, geographically speaking. As shown in the maps of Figure 9, our

100 simulations converge upon seven different forms of spatial organization by 3500, and the

factual economy simulation converges upon an eighth.39 The eight outcomes differ in many

senses, such as: where the location with the largest population is located, the relative size

of the largest location and secondary location(s) of agglomeration, the importance of the

West relative to the East, the extent to which historically outsized concentrations (such as

the Northeast) still hold sway in 1,500 years, and (as per Figure 8) aggregate welfare.40 The

highest-welfare steady-state (map g) has one dominant location (in Charlottesville, Virginia)

but the second-best configuration (map f), which is the factual history simulation, also has

substantial population concentration in Charlottesville, but a larger concentration in Denver,

Colorado. On the other hand, as illustrated in the scatter plots of Figure 9, all eight spatial

configurations display a similar degree of correlation, on average, between their year 3500

simulated populations and the factual population in 2000.

4.4 Summary

The results above paint a nuanced picture of how we might expect history to matter in

a dynamic economic geography model when it is estimated to fit long-run U.S. data. We

have seen how merely swapping the productivity fundamentals of similarly-sized locations

in 1900—while holding fixed all other exogenous features before, during and after the year

1900—can set in motion a wide range of endogenous consequences, playing out on multiple

spatial scales.

On one end of the scale, there is a great deal of local persistence: local shocks have

large effects on their local economies, and these effects continue to leave their trace on local

outcomes over many centuries. At the same time, these local shocks also have large conse-

quences for the spatial configuration of the economy as a whole because of the logic of path

39Specifically, we define a “form” here on the basis of the identity of the location with the greatest con-
centration of population. Simulations within the same form may nonetheless differ in the extent to which
population concentrates in that location and/or the distribution of economic activity elsewhere.

40The color of the dots in the scatter plots beneath each map correspond with the colors of the welfare
paths shown in Figure 8.
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dependence: the 101 random draws of swaps that we study converge towards at least eight

distinct configurations, each of which features unique patterns of economic agglomeration

and substantial differences in aggregate welfare.

In short, history definitely matters in our estimated model U.S. economy. It matters in

terms of slow convergence to any steady-state, in terms of where a steady-state agglomerates

spatially, and even in terms of whether relatively good or bad steady-states are selected by

historical conditions. And as the analytical bounds of Table 4 suggest, it is likely that our

swap simulations are only probing a small extent to which history can matter in this context.

5 Conclusion

It is not hard to look at the geographic patterns of economic activity around us and believe

both that agglomeration forces are at work and that they may even be strong enough to

cause a self-reinforcing clustering of economic activity. This opens up the possibility that

there are many such spatial configurations in which mobile factors could settle—some good,

some bad—as well as the potential for historical accidents, such as initial conditions or long-

defunct technological shocks, to play a long-lived or even permanent role in determining the

distribution and efficiency of spatial allocations.

This paper has sought to develop a dynamic economic geography framework that can

be used to characterize and quantify these possibilities. We have derived conditions on

how contemporaneous and historical agglomeration externalities in production and amenities

govern: (i) the existence and uniqueness of equilibria; (ii) the duration of persistence of shocks

around a steady-state; (iii) the scope for multiple steady-states; and (iv) the extent to which

such multiple steady-states may deliver different amounts of aggregate welfare.

A particularly rich region of the model’s parameter space—and one that is consistent

with our estimates based on U.S. Census data from 1800 onwards—is where equilibria are

unique and easy to solve for, persistence lasts many centuries, and only minor perturbations

in historical conditions can lead the economy towards distinct steady-states with substantial

differences in overall efficiency. One implication of this parameter region is that tempo-

rary economic events in many domains will leave large and long-lived geographical traces,

consistent with the numerous empirical studies discussed in the Introduction. Answers to

questions about optimal place-based policy will also be particularly subtle in the presence of

such features.

While we have developed this paper’s empirical and theoretical tools in the hopes of an

improved understanding of regional economic geography, these techniques could be applied

to other settings in which increasing returns and coordination failures, and hence multiplic-
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ity and path dependence, have long appeared as objects of theoretical interest that lack a

corresponding amount of high-dimensional quantification and simulation. Potential areas

of application could include: intra-city geographical phenomena such as residential segre-

gation, sorting, and so-called “tipping” dynamics (Schelling, 1971; Card, Mas, and Roth-

stein, 2008; and Lee and Lin, 2018); traditional “big push” models of economic development

(Rosenstein-Rodan, 1943; Murphy, Shleifer, and Vishny, 1989; and Krugman and Venables,

1995); competition policy questions surrounding technology adoption in the presence of net-

work effects and switching costs (David, 1985; and Farrell and Klemperer, 2007); and the

study of dynamic questions of political economy such as those surveyed in Acemoglu and

Robinson (2005).
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Figure 1: Illustration of Propositions 1 and 2

(a) Range of uniqueness (b) Bound on persistence

Notes : This figure illustrates the regions of the parameter range (in the space of α1 and β1,
holding other parameters constant) relating to Propositions 1 and 2. The left panel shows (in
yellow) the range of α1 and β1 that satisfy the conditions for the uniqueness of equilibrium,
as per Proposition 1, holding trade and migration elasticities constant at the values σ = 9
and θ = 4. The right panel shows the upper bound on the persistence of the economy, as

measured by the largest eigenvalue of |B−1|
(
I− Ã (α1, β1)

)−1

C |B|, as per Proposition 2,

holding trade and migration elasticities constant at the same values and choosing α2 = 0.04
and β2 = 0.33 to be consistent with the estimation results below. Note that the bound
on persistence approaches infinity as the parameter constellation approaches the threshold
where the sufficient condition for uniqueness is no longer satisfied (but we top-code the color
scale for readability).

46



Figure 2: Illustrating the implications of Propositions 2-4 in a three-location economy

(a) Prop. 2: The closer to non-uniqueness, the greater the persistence

Far from non-uniqueness

Location 1

Location 2

Location 3
1=-0.25, 2=0, ui=1  i, =1.1

Close to non-uniqueness

Location 1

Location 2

Location 3
1=0, 2=0, ui=1  i, =1.1

(b) Prop. 3: Historical spillovers can lead to path dependence

No path dependence

Location 1

Location 2

Location 3
1=0, 2=0, ui=1  i, =1.1

Path dependence

Location 1

Location 2

Location 3
1=0, 2=0.25, ui=1  i, =1.1

(c) Prop. 4: Greater differences in local geography, greater welfare consequences

Symmetric locations

Location 1

Location 2

Location 3
1=0, 2=0.25, ui=1  i, =1.1

Welfare ( ) difference between good and bad (stable) steady states:1

Asymmetric locations

Location 1

Location 2

Location 3
1=0, 2=0.25, u1=1.05, u2=u3=1, =1.1

Welfare ( ) difference between good and bad (stable) steady states:1.02

(d) Prop. 4: Greater differences in global geography, greater welfare consequences

Higher trade costs

Location 1

Location 2

Location 3
1=0, 2=0.25, u1=1.01, u2=u3=1, =1.1

Welfare ( ) difference between good and bad (stable) steady states:1.02

Lower trade costs

Location 1

Location 2

Location 3
1=0, 2=0.25, u1=1.01, u2=u3=1, =1.08

Welfare ( ) difference between good and bad (stable) steady states:1.0204

Notes : These figures illustrate phase diagrams for a three-location example economy. Arrows
indicate the change in the equilibrium distribution of population from one period to the next,
with yellow stars denoting stable steady-states. See Section 2.4 for details.



Figure 3: Agglomeration spillover parameter estimates

Notes : This figure illustrates the parameter estimates (holding σ and θ constant) obtained

in Section 3.3. The red star denotes α̂1 and β̂1, which lies in the yellow region of equilibrium
uniqueness following Proposition 1. The green star denotes α̂1 + α̂2 and β̂1 + β̂2, which lies
in the blue region, indicating the possibility of multiple steady-states following Proposition
2. Confidence intervals are shown with dashed lines.
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Figure 4: How much of the spatial distribution of economic activity today is due to history?

(a) Population (Li,2000)
0
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(b) Ex-post welfare (Wi,2000)
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1

1.
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Geography Market Access History

Notes : This figure presents the variance decomposition of the observed spatial distribution
of economic activity in the year 2000 into three components, as per equation (33): geography
fundamentals (i.e. the complete history of realizations of productivities Āit and amenities
ūit from t = 0 until the present), market access (i.e. the complete history of goods market
access Pit and labor market access Λit from t = 0 until the present), and history (i.e. the
population distribution in t = 0, Li0). The decompositions shown correspond to four choices
of initial year t = 0: 1800, 1850, 1900, and 1950. Panel (a) presents the decomposition for
the observed distribution of population in the year 2000 (Li,2000), and panel (b) presents the
equivalent for ex-post welfare (Wi,2000).
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Figure 5: How persistent are local historical shocks for the local economy?
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Notes : This figure shows the distribution of estimated elasticities of the local persistence
elasticity, η̂Oit for various outcomes “O” (population Li,t, ex-post welfare Wit, and ex-ante
welfare Ωit), across all locations i and for each indicated year t. Following equation (34),

ηOit is obtained in a regression of lnO
(b)
it on L

(b)
i,1900 across 100 simulations b, separately by

location-year, using the (randomly assigned) value of exogenous productivity A
(b)

i,1900 as an
IV. Each simulated history randomly shuffles the realized exogenous productivity in the year
1900 between all pairs of locations, where pairs are assigned to locations with the closest
1900 populations. The dots indicate the mean estimated elasticity η̂Oit across all locations
(and the bar indicates the interquartile range) in a given year, weighting elasticity estimates
by the inverse of the square the estimate’s standard error.
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Figure 6: How resilient are locations to historical shocks?
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Notes : This figure plots the standard deviation of log population lnL
(b)
i,2000, log ex-post welfare

lnW
(b)
i,2000, and log ex-ante welfare ln Ω

(b)
i,2000 in the year 2000 across 100 different simulations b

of history against each location’s actual year 2000 population Li,2000 . Each simulated history

randomly shuffles the realized exogenous productivity A
(b)

i,1900 in the year 1900 between all
pairs of locations, where pairs are assigned to locations with the closest 1900 populations.
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Figure 7: How persistent are historical shocks for the economy as a whole?
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Notes : This figure shows the correlation across simulations in the location of economic
activity over time. For each year and each possible pair of simulations, we calculate the
cross-location correlation in log population lnL

(b)
i,t , ex-post log welfare lnW

(b)
i,t , and ex-ante

log welfare ln Ω
(b)
i,t . The dot indicates the mean correlation across all possible pairs within a

year and the bar reports the interquartile range. We set the correlation of ex-ante log welfare
equal to one if either simulation in a given year is in a steady-state (since steady-state ex-
ante welfare is equalized across locations). As there are 100 simulated histories (plus the
observed factual history), there are 5,050 possible correlations (101× 100× 1

2
) in each year.

Each simulated history randomly shuffles the realized exogenous productivity A
(b)

i,1900 in the
year 1900 between all pairs of locations, where pairs are assigned to locations with the closest
1900 populations.
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Figure 8: How does history affect aggregate welfare?
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Notes : This figure plots the evolution of the population-weighted distribution of ex-ante

welfare, ln Ω
(b)
t ≡

∑N
i=1

(
L
(b)
it

L̄

)
ln Ω

(b)
it , over time for 100 different simulations b of history. The

color of each path corresponds to the location with the greatest concentration of population
in the year 3500 (see Figure 9). Also shown (in lime green) is the path of aggregate welfare
for the factual economy (normalized to its 2000 value because the scale of aggregate welfare
is unidentified for years prior to 2000). Yellow circles indicate when a steady-state has been
reached. The red dashed bar indicates the maximum possible steady-state aggregate welfare
according to Proposition 4. Grey lines indicate annualized growth rates from the year 2000.
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Table 1: Gravity distance elasticity for trade and migration

log(trade) log(migration)
(1) (2) (3) (4) (5)

1997 1850 1900 1950 2000

log(distance) -1.353*** -2.157*** -1.798*** -1.890*** -1.511***
(0.062) (0.190) (0.113) (0.084) (0.069)

R-squared 0.901 0.689 0.793 0.857 0.908
Observations 2,091 626 1,991 2,152 2,304

Notes: OLS estimates of equation (25) in column 1 and equation (26) in columns 2-5. Each observation is
an (origin state)×(destination state)×(year) triplet for the set of 48 coterminous U.S. states. The dependent
variable in column 1 is the log value of goods traded, and that in columns 2-5 is the log number of 25-74
year olds residing in the destination state in that year that were born in the origin state (as a proxy for
lifetime adult migration). All specifications control for origin-year and destination-year fixed effects. Trade
data comes from the Commodity Flow Survey (1997); migration data comes from the decennial U.S. census
(in the years indicated). Distance is the geodesic distance between the midpoint of each state, where own
distance is the expected distance between any two residents within a state, assuming the state is a square
and population is uniformly distributed within the state. Standard errors are two-way clustered at the origin
state and destination state. Stars indicate statistical significance (with *** denoting p<.01).
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Table 2: Estimated productivity spillovers

(1) (2) (3)

Estimated parameters:
Contemporaneous productivity spillover (α1) 0.409 0.217*** 0.114***

(0.963) (0.038) (0.034)
Historical productivity spillover (α2) 0.054 0.045 0.040

(0.066) (0.033) (0.030)
Armington elasticity of substitution (σ) 3.065

(4.986)

Assumed parameter values:
Armington elasticity of substitution (σ) N/A 5 9

Min. Sanderson-Windmeijer first-stage F-statistic 28.5 75.9 75.9
Observations 15,640 15,640 15,640

Notes: This table reports 2SLS estimates of the parameters in equation (31) in column 1 (and subject to
the stated assumed parameter values in columns 2 and 3). Each observation is a sub-county from 1850-
2000. The instruments used are the interaction of linear time trends with the maximum temperature in the
warmest month (and its square), and with the minimum temperature in the coldest month (and its square).
All specifications control for sub-county and region-year fixed effects (where a region is one of 14 equally
sized squares covering the continental U.S.) and for the excluded instruments used to estimate productivity
spillovers in Table 3. Standard errors are two-way clustered at the sub-county (to allow for serial correlation
over time) and county-year levels (to allow for data aggregation across sub-counties within year) and are
reported in parentheses. Sanderson and Windmeijer (2016) F-statistic refers to the first-stage F-statistic for
each first-stage (shown in Table C.1) obtained while partialling out the other endogenous variable; the value
reported is the minimum of the two such F-statistics across the two equations. Stars indicate statistical
significance (with *** denoting p<.01).
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Table 3: Estimated amenity spillovers

(1) (2) (3) (4) (5)

Estimated parameters:
Contemporaneous amenity spillover (β1) 1.216 0.088 -0.150 0.093 -0.145

(1.850) (0.284) (0.278) (0.284) (0.279)
Historical amenity spillover (β2) 0.399 0.317* 0.322* 0.325* 0.330*

(0.335) (0.182) (0.178) (0.182) (0.179)
Migration elasticity (θ) 0.620

(0.858)
Armington elasticity of substitution (σ) 0.268

(2.524)

Assumed parameter values:
Armington elasticity of substitution (σ) 5 5 9 9
Migration elasticity θ 2 4 2 4

Min. S-W first-stage F-statistic 3.078 7.373 7.373 7.373 7.373
Observations 15,640 15,640 15,640 15,640 15,640

Notes: This table reports 2SLS estimates of the parameters in equation (32) in column 1 (and subject to
the stated assumed parameter values in columns 2-5). The instruments used are the interaction of linear
time trends with the difference between high-intensity and low-intensity agro-climatic potential yields of
maize (mean and standard deviation), and with the difference between high-intensity yields of soy and the
low-intensity yields of wheat (mean and standard deviation). All specifications control for sub-county and
region-year fixed effects and for the excluded instruments used to estimate productivity spillovers in Table
2. Standard errors, two-way clustered at the sub-county and county-year levels, are reported in parentheses.
Notes to Table 2 contain further details. Stars indicate statistical significance (with * denoting p<.1).
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Table 4: Steady-state welfare bounds

Migration Trade Local Scale
Constants costs costs geography economies Total

(1) (2) (3) (4) (5) (6)

Upper bound
(
ln Ω̄

)
1.62 0.19 0.09 0.90 1.18 3.98

Lower bound (ln Ω) -1.59 -1.58 -0.68 -0.88 -1.33 -6.05

Difference
(

ln Ω̂PD
)

3.21 1.77 0.77 1.78 2.51 10.03

Notes: This table reports the steady-state welfare bounds (and their decomposition into five exogenous
components) as stated in Proposition 4. The upper and lower bound equations are:

1

2
ln c1 +

1

2
ln λ̄

1
θ

M +
1

2
ln λ̄

1
σ−1

T +
1

2
max
i

ln Āiūi +
1

2
ln
(
L̄ρ−

1
θNε1

)
= ln Ω̄

−1

2
ln c2 +

1

2
lnλ

1
θ

M +
1

2
lnλ

1
σ−1

T +
1

2
min
i

ln Āiūi +
1

2
ln
(
L̄ρNε2

)
= ln Ω,

where each terms refers to the impact of the constants (column 1), the migration costs (2), the trade costs
(3), the local geography (4), and the scale economies (5), respectively. The third row reports the difference
between the upper bound and lower bound, i.e. ln Ω̂PD ≡ ln Ω̄ − ln Ω, for each component and the total.
Column 6 is equal to the sum of columns 1-5.
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A Online Appendix: Proofs

Proofs of Propositions 1, 3, and 5 rely on Theorem 3 (parts (i) and (ii)) of Allen, Arkolakis, and Li, 2020,
which we restate here for convenience:

Consider the following system of N ×K system of equations

K∏
h=1

(
xhi
)βkh

=

K∑
j=1

Kk
ij

[
H∏
h=1

(
xhj
)γkh]

,

where {βkh,γkh} are known elasticities and
{
Kk
ij > 0

}
are known bilateral frictions. Let B ≡ [βkh] and

Γ ≡ [γkh] be the K × K matrices of the known elasticities. Define A ≡ ΓB−1 and the absolute value

(element by element) of A as Ap. Then there exists a strictly positive set of
{
xhi > 0

}h∈{1,...,K}
i∈{1,...,N} and that

solution is unique if the spectral radius (i.e. the absolute value of the largest eigenvalue, denoted ρ (·)) of
Ap is weakly less than one, i.e. ρ (Ap) ≤ 1.

A.1 Proof of Proposition 1

When trade costs are symmetric, Allen and Arkolakis (2014) show that the origin and destination fixed
effects of the gravity trade equation are equal up to scale. That is if Xij = Kijγiδj , Kij = Kji, and∑
j Xij =

∑
j Xji, there exists a κ > 0 such that:

γi = κδi.

41From equation (4), this implies:

w1−σ
i Aσ−1

i = κPσ−1
i wiLi ⇐⇒

w1−σ
i Aσ−1

i = κ

(
wiui
Wi

)σ−1

wiLi ⇐⇒

wi = κ
1

1−2σW σ̃
i u
−σ̃
i Aσ̃i L

1
1−2σ

i ⇐⇒

wi = κ
1

1−2σW σ̃
i ū
−σ̃
i Āσ̃i L

(α1−β1+ 1
1−σ )σ̃

i

(
Llagi

)(α2−β2)σ̃

where σ̃ ≡ σ−1
2σ−1 , and we have used the spillover functions with notation Ai = ĀiL

α1
i

(
Llagi

)α2

and ui =

ūiL
β1

i

(
Llagi

)β2

.

We can use this to simplify our equilibrium equations:(
W σ̃
i u
−σ̃
i Aσ̃i L

σ̃
1−σ
i

)σ
Li =

∑
j

τ1−σ
ij Aσ−1

i uσ−1
j W 1−σ

j

(
W σ̃
j u
−σ̃
j Aσ̃j L

σ̃
1−σ
j

)σ
Lj

Πθ
i =

∑
j

µ−θij W
θ
j

Li =
∑
j

µ−θji W
θ
i Π−θj Llagj ,

as the equivalent set:

41The exact scale (κ) is determined by the aggregate labor market clearing condition. However, the scale
can be ignored by first solving for the “scaled” labor (i.e. imposing the scalar is equal to one) and then
recovering the scale by imposing the labor market clearing condition. This does not affect any of the other
equilibrium equations below, as they are all homogeneous of degree 0 with respect to labor.
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W σ̃σ
i L

σ̃(1−α1(σ−1)−β1σ)
i =

∑
j

τ1−σ
ij Ā

(σ−1)σ̃
i ūσ̃i β

(σ−1)σ̃
j Āσ̃σj

(
Llagi

)σ̃(α2(σ−1)+β2σ)

×
(
Llagj

)σ̃(α2σ+β2(σ−1))

W
−(σ−1)σ̃
j L

σ̃(1+α1σ+β1(σ−1))
j

Πθ
i =

∑
j

µ−θij W
θ
j

LiW
−θ
i =

∑
j

µ−θji Π−θj Llagj .

If we order the endogenous variables as L,W,Π, then the matrix of LHS coefficients in this system becomes:

B ≡

σ̃ (1− α1 (σ − 1)− β1σ) σ̃σ 0
0 0 θ
1 −θ 0


and the equivalent for the RHS coefficients is:

Γ ≡

σ̃ (1 + α1σ + β1 (σ − 1)) − (σ − 1) σ̃ 0
0 θ 0
0 0 −θ

 .

Hence, we have:

A ≡ ΓB−1 =


θ−σ−β1θ+α1σθ+β1σθ+1
σ+θ+α1θ−α1σθ−β1σθ

0 σ̃(2σ−1)(α1+1)
σ+θ+α1θ−α1σθ−β1σθ

θ/σ̃
σ+θ+α1θ−α1σθ−β1σθ

0 −θ(α1−α1σ)−β1σ+1
σ+θ+α1θ−α1σθ−β1σθ

0 −1 0

 .

It is straightforward to show that the spectral radius of the (element-wise) absolute value of A, denoted Ap,
is the same as the spectral radius of the 2 × 2 matrix that removes the third row and second column from
Ap.42 Hence the uniqueness condition requires that the absolute value of this smaller matrix has a spectral
radius no greater than one, i.e.:

ρ

∣∣∣ θ(1+α1σ+β1(σ−1))−(σ−1)
σ+θ(1+(1−σ)α1−β1σ)

∣∣∣ ∣∣∣ (σ−1)(α1+1)
σ+θ(1+(1−σ)α1−β1σ)

∣∣∣∣∣∣ θ/σ̃
σ+θ(1+(1−σ)α1−β1σ)

∣∣∣ ∣∣∣ θ(1−(σ−1)α1−β1σ)
σ+θ(1+(1−σ)α1−β1σ)

∣∣∣
 ≤ 1,

as required.

A.2 Proof of Proposition 2

Recall that the equilibrium of the dynamic model corresponds to the set of endogenous variables {Lit,Wit,Πit}
that solve the following system of equations given exogenous parameters

{
Āit, ūit, τij , µij , Lit−1

}
.

42This result is achieved by construction. Let Ap denote the element-wise absolute value of A and let Ap
−2,3

denote the 2× 2 matrix that removes the third row and second column from Ap. By the Perron Frobenius
theorem, we have λAp

−2,3 = λx, where x is the unique (to-scale) strictly positive eigenvector corresponding
to the largest eigenvalue (i.e. the spectral radius) of Ap

−2,3, λ. It is straightforward to show that λAp = λx̃,

where x̃ ≡
[
x1, x2,

x2

λ

]
,i.e. λ is also an eigenvalue for Ap. Moreover, because x̃ is strictly positive—and

the Perron Frobenius theorem tells us that there is only one strictly positive eigenvector (to-scale) which
corresponds to the largest eigenvalue—we know that λ must be the largest eigenvalue for Ap, i.e. λ is the
spectral radius of Ap and Ap

−2,3. We thank Vincent Lohmann for a helpful discussion about this point.
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We have the (combined) trade equation:

L
σ̃(1−α1(σ−1)−β1)
it W σ̃σ

it =
∑
j

FijL
σ̃(1+(σ−1)β+ασ)
jt W

(1−σ)σ̃
jt (Li,t−1)

σ̃(α2(σ−1)+β2σ)
(Lj,t−1)

σ̃(α2σ+β2(σ−1))
,

(A.1)
the population law of motion:

LitW
−θ
it =

∑
j

µ−θji Π−θjt Ljt−1, (A.2)

and the value of living in a particular location (multilateral migration resistance):

Πθ
it =

∑
j

µ−θij W
θ
jt. (A.3)

We take as given the population at time t = 0, i.e. {Li0}. The proof of Proposition 2 proceeds in five steps.

Step #1: Redefine the system

We begin by redefining the left hand side of the equilibrium equations:

xit ≡ Lσ̃(1−α(σ−1)−β1)
it W σ̃σ

it

yit ≡ LitW−θit
zit ≡ Πθ

it,

or equivalently: lnxit
ln yit
ln zit

 =

σ̃ (1− α (σ − 1)− β1) σ̃σ 0
1 −θ 0
0 0 θ


︸ ︷︷ ︸

≡B

 lnLit
lnWit

ln Πit

 ⇐⇒

B−1

lnxit
ln yit
ln zit

 =

 lnLit
lnWit

ln Πit

 .

With a slight abuse of notation, let B−1
kl denote the 〈k, l〉th component of B−1. We can then re-write the

system of equations as:

xit =
∑
j

Fij

(
x
B−1

11
jt y

B−1
12

jt z
B−1

13
jt

)σ̃(1+(σ−1)β1+ασ) (
x
B−1

21
jt y

B−1
22

jt z
B−1

23
jt

)(1−σ)σ̃ (
x
B−1

11
jt−1y

B−1
12

jt−1z
B−1

13
jt−1

)σ̃(α2σ+β2(σ−1))

×
(
x
B−1

11
it−1y

B−1
12

it−1z
B−1

13
it−1

)σ̃(α2(σ−1)+β2σ)

yit =
∑
j

µ−θji

(
x
B−1

31
jt y

B−1
32

jt z
B−1

33
jt

)−θ (
x
B−1

11
jt−1y

B−1
12

jt−1z
B−1

13
jt−1

)1

zit =
∑
j

µ−θij

(
x
B−1

21
jt y

B−1
22

jt z
B−1

23
jt

)θ
,
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or, equivalently:

xit =
∑
j

Fijx
Ã11
jt yÃ12

jt zÃ13
jt

(
x
B−1

11
jt−1y

B−1
12

jt−1z
B−1

13
jt−1

)σ̃(α2σ+β2(σ−1)) (
x
B−1

11
it−1y

B−1
12

it−1z
B−1

13
it−1

)σ̃(α2(σ−1)+β2σ)

(A.4)

yit =
∑
j

µ−θji x
Ã21
jt yÃ22

jt zÃ23
jt x

B−1
11

jt−1y
B−1

12
jt−1z

B−1
13

jt−1 (A.5)

zit =
∑
j

µ−θij x
Ã31
jt yÃ32

jt zÃ33
jt , (A.6)

where:

Ã =

σ̃ (1 + (σ − 1)β1 + α1σ) (1− σ) σ̃ 0
0 0 −θ
0 θ 0

B−1.

Equations (A.4)-(A.6) constitute the redefined system. As an aside, note that
∣∣∣Ã∣∣∣ ≡ A (α1, β1), i.e.

A (α1, β1) is the (element-wise) absolute value of Ã.

Step #2: Re-write the system in terms of changes

We can further re-write equations Equations (A.4)-(A.6) as:

xit =
∑
j

Fijx
Ã11
jt yÃ12

jt zÃ13
jt

(
x
B−1

11
jt−1y

B−1
12

jt−1z
B−1

13
jt−1

)σ̃(α2σ+β2(σ−1)) (
x
B−1

11
it−1y

B−1
12

it−1z
B−1

13
it−1

)σ̃(α2(σ−1)+β2σ)

⇐⇒

xit =
∑
j

Fij

(
xjt
xj,t−1

)Ã11
(

yjt
yj,t−1

)Ã12
(

zj,t
zj,t−1

)Ã13
((

xj,t−1

xj,t−2

)B−1
11
(
yj,t−1

yj,t−2

)B−1
12
(
zj,t−1

zj,t−2

)B−1
13

)σ̃(α2σ+β2(σ−1))

×

((
xi,t−1

xi,t−2

)B−1
11
(
yi,t−1

yi,t−2

)B−1
12
(
zi,t−1

zi,t−2

)B−1
13

)σ̃(α2(σ−1)+β2σ)

× xÃ11
j,t−1y

Ã12
j,t−1z

Ã13
j,t−1

(
x
B−1

11
jt−2y

B−1
12

jt−2z
B−1

13
jt−2

)σ̃(α2σ+β2(σ−1))

×
(
x
A−1

11
it−2y

A−1
12

it−2z
A−1

13
it−2

)σ̃(α2(σ−1)+β2σ)

, (A.7)

yit =
∑
j

µ−θji x
Ã21
jt yÃ22

jt zÃ23
jt x

B−1
11

jt−1y
B−1

12
jt−1z

B−1
13

jt−1 ⇐⇒

yit =
∑
j

µ−θji

(
xjt
xj,t−1

)Ã21
(

yj,t
yj,t−1

)Ã22
(

zj,t
zj,t−1

)Ã23
(
xj,t−1

xj,t−2

)B−1
11
(
yj,t−1

yj,t−2

)B−1
12
(
zj,t−1

zj,t−2

)B−1
13

× xÃ21
j,t−1y

Ã22
j,t−1z

Ã23
j,t−1x

B−1
11

jt−2y
B−1

12
jt−2z

B−1
13

jt−2, (A.8)

zit =
∑
j

Fijx
Ã31
jt yÃ32

jt zÃ33
jt ⇐⇒

zit =
∑
j

Fij

(
xjt
xj,t−1

)Ã31
(

yjt
yj,t−1

)Ã32
(

zj,t
zj,t−1

)Ã33

xÃ31
j,t−1y

Ã32
j,t−1z

Ã33
j,t−1. (A.9)

Equations (A.7)-(A.9) are then the redefined system in changes.
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Step #3: Bound the changes

Define the following constants:

Mx,t ≡ max
j

xj,t
xj,t−1

, My,t ≡ max
j

yj,t
yj,t−1

, Mz,t ≡ max
j

zj,t
zj,t−1

mx,t ≡ min
j

xj,t
xj,t−1

, my,t ≡ min
j

yj,t
yj,t−1

, mz,t ≡ min
j

zj,t
zj,t−1

µx,t ≡
Mx,t

mx,t
, µy,t ≡

My,t

my,t
, µz,t ≡

Mz,t

mz,t
.

Let us bound {xit} from above first:

xit =
∑
j

Fij

(
xjt
xj,t−1

)Ã11
(

yjt
yj,t−1

)Ã12
(

zj,t
zj,t−1

)Ã13
((

xj,t−1

xj,t−2

)B−1
11
(
yj,t−1

yj,t−2

)B−1
12
(
zj,t−1

zj,t−2

)B−1
13

)σ̃(α2σ+β2(σ−1))

×

((
xi,t−1

xi,t−2

)B−1
11
(
yi,t−1

yi,t−2

)B−1
12
(
zi,t−1

zi,t−2

)B−1
13

)σ̃(α2(σ−1)+β2σ)

× xÃ11
j,t−1y

Ã12
j,t−1z

Ã13
j,t−1

(
x
B−1

11
jt−2y

B−1
12

jt−2z
B−1

13
jt−2

)σ̃(α2σ+β2(σ−1)) (
x
B−1

11
it−2y

B−1
12

it−2z
B−1

13
it−2

)σ̃(α2(σ−1)+β2σ)

=⇒

xit
xi,t−1

≤
M

Ã111{Ã11≥0}
x,t

m
−Ã111{Ã11<0}
x,t

M
Ã121{Ã12≥0}
y,t

m
−Ã121{Ã12<0}
y,t

M
Ã131{Ã13≥0}
z,t

m
−Ã131{Ã13<0}
z,t

M
B−1

11 σ̃(α2σ+β2(σ−1))1{B−1
11 σ̃(α2σ+β2(σ−1))≥0}

x,t−1

m
−B−1

11 σ̃(α2σ+β2(σ−1))1{B−1
11 σ̃(α2σ+β2(σ−1))<0}

x,t−1

×
M

B−1
11 σ̃(α2(σ−1)+β2σ)1{B−1

11 σ̃(α2(σ−1)+β2σ)≥0}
x,t−1

m
−B−1

11 σ̃(α2(σ−1)+β2σ)1{B−1
11 σ̃(α2(σ−1)+β2σ)<0}

x,t−1

M
B−1

12 σ̃(α2σ+β2(σ−1))1{B−1
12 σ̃(α2σ+β2(σ−1))≥0}

y,t−1

m
−B−1

12 σ̃(α2σ+β2(σ−1))1{B−1
12 σ̃(α2σ+β2(σ−1))<0}

y,t−1

×
M

B−1
12 σ̃(α2(σ−1)+β2σ)1{B−1

12 σ̃(α2(σ−1)+β2σ)≥0}
y,t−1

m
−B−1

12 σ̃(α2(σ−1)+β2σ)1{B−1
12 σ̃(α2(σ−1)+β2σ)<0}

y,t−1

M
B−1

13 σ̃(α2σ+β2(σ−1))1{B−1
13 σ̃(α2σ+β2(σ−1))≥0}

z,t−1

m
−B−1

13 σ̃(α2σ+β2(σ−1))1{B−1
13 σ̃(α2σ+β2(σ−1))<0}

z,t−1

×
M

B−1
13 σ̃(α2(σ−1)+β2σ)1{B−1

13 σ̃(α2(σ−1)+β2σ)≥0}
z,t−1

m
−B−1

13 σ̃(α2(σ−1)+β2σ)1{B−1
13 σ̃(α2(σ−1)+β2σ)<0}

z,t−1

. (A.10)
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Similarly, we can bound {xi,t} from below:

xit =
∑
j

Fij

(
xjt
xj,t−1

)Ã11
(

yjt
yj,t−1

)Ã12
(

zj,t
zj,t−1

)Ã13
((

xj,t−1

xj,t−2

)B−1
11
(
yj,t−1

yj,t−2

)B−1
12
(
zj,t−1

zj,t−2

)B−1
13

)σ̃(α2σ+β2(σ−1))

×

((
xi,t−1

xi,t−2

)B−1
11
(
yi,t−1

yi,t−2

)B−1
12
(
zi,t−1

zi,t−2

)B−1
13

)σ̃(α2(σ−1)+β2σ)

xÃ11
j,t−1y

Ã12
j,t−1z

Ã13
j,t−1

(
x
B−1

11
jt−2y

B−1
12

jt−2z
B−1

13
jt−2

)σ̃(α2σ+β2(σ−1))

×
(
x
B−1

11
it−2y

B−1
12

it−2z
B−1

13
it−2

)σ̃(α2(σ−1)+β2σ)

=⇒

xit
xi,t−1

≥
m
Ã111{Ã11≥0}
x,t

M
−Ã111{Ã11<0}
x,t

m
Ã121{Ã12≥0}
y,t

M
−Ã121{Ã12<0}
y,t

m
Ã131{Ã13≥0}
z,t

M
−Ã131{Ã13<0}
z,t

m
B−1

11 σ̃(α2σ+β2(σ−1))1{B−1
11 σ̃(α2σ+β2(σ−1))≥0}

x,t−1

M
−B−1

11 σ̃(α2σ+β2(σ−1))1{B−1
11 σ̃(α2σ+β2(σ−1))<0}

x,t−1

×
m
B−1

11 σ̃(α2(σ−1)+β2σ)1{B−1
11 σ̃(α2(σ−1)+β2σ)≥0}

x,t−1

M
−B−1

11 σ̃(α2(σ−1)+β2σ)1{B−1
11 σ̃(α2(σ−1)+β2σ)<0}

x,t−1

m
B−1

12 σ̃(α2σ+β2(σ−1))1{B−1
12 σ̃(α2σ+β2(σ−1))≥0}

y,t−1

M
−B−1

12 σ̃(α2σ+β2(σ−1))1{B−1
12 σ̃(α2σ+β2(σ−1))<0}

y,t−1

×
m
B−1

12 σ̃(α2(σ−1)+β2σ)1{B−1
12 σ̃(α2(σ−1)+β2σ)≥0}

y,t−1

M
−B−1

12 σ̃(α2(σ−1)+β2σ)1{B−1
12 σ̃(α2(σ−1)+β2σ)<0}

y,t−1

m
B−1

13 σ̃(α2σ+β2(σ−1))1{B−1
13 σ̃(α2σ+β2(σ−1))≥0}

z,t−1

M
−B−1

13 σ̃(α2σ+β2(σ−1))1{B−1
13 σ̃(α2σ+β2(σ−1))<0}

z,t−1

×
m
B−1

13 σ̃(α2(σ−1)+β2σ)1{B−1
13 σ̃(α2(σ−1)+β2σ)≥0}

z,t−1

M
−B−1

13 σ̃(α2(σ−1)+β2σ)1{B−1
13 σ̃(α2(σ−1)+β2σ)<0}

z,t−1

. (A.11)

Combining equations (A.10) and (A.11) (dividing the maximum by the minimum) implies:

µx,t ≤µ
|Ã11|
x,t µ

|Ã12|
y,t µ

|Ã13|
z,t

× µ|B
−1
11 σ̃(α2σ+β2(σ−1))|+|B−1

11 σ̃(α2(σ−1)+β2σ)|
x,t−1 µ

|B−1
12 σ̃(α2σ+β2(σ−1))|+|B−1

12 σ̃(α2(σ−1)+β2σ)|
y,t−1

× µ|B
−1
13 σ̃(α2σ+β2(σ−1))|+|B−1

13 σ̃(α2(σ−1)+β2σ)|
z,t−1 .

Proceeding similarly for {yit} and {zit} yield, respectively:

µy,t ≤ µ
|Ã21|
x,t µ

|Ã22|
y,t µ

|Ã23|
z,t µ

|B−1
11 |

x,t−1µ
|B−1

12 |
y,t−1 µ

|B−1
13 |

z,t−1

µz,t ≤ µ
|Ã31|
x,t µ

|Ã32|
y,t µ

|Ã33|
z,t .

Step #4: Combining the bounds

Combining the three inequalities and taking logs yields:

lnµx,t
lnµy,t
lnµz,t

 ≤


∣∣∣Ã11

∣∣∣ ∣∣∣Ã12

∣∣∣ ∣∣∣Ã13

∣∣∣∣∣∣Ã21

∣∣∣ ∣∣∣Ã22

∣∣∣ ∣∣∣Ã23

∣∣∣∣∣∣Ã31

∣∣∣ ∣∣∣Ã32

∣∣∣ ∣∣∣Ã33

∣∣∣


︸ ︷︷ ︸

≡A(α1,β1)

lnµx,t
lnµy,t
lnµz,t

+ C

lnµx,t−1

lnµy,t−1

lnµz,t−1

 ⇐⇒

(I−A (α1, β1))

lnµx,t
lnµy,t
lnµz,t

 ≤ C

lnµx,t−1

lnµy,t−1

lnµz,t−1

 , (A.12)
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for all t > 0, where C is a 3x3 matrix whose first row has elements C1j =
∣∣B−1

1j σ̃ (α2σ + β2 (σ − 1))
∣∣ +∣∣B−1

1j σ̃ (α2 (σ − 1) + β2σ)
∣∣, whose second row has elements C2j =

∣∣B−1
1j

∣∣, and whose third row is a vector of
zeroes.

Because ρ (A (α1, β1)) < 1, (I−A (α1, β1)) in an M -matrix and is invertible, which in turn implies that

its inverse (I−A (α1, β1))
−1

is strictly positive. As a result, we can multiply both sides of equation (A.12)

by (I−A (α1, β1))
−1

while preserving the inequality, which yields:lnµx,t
lnµy,t
lnµz,t

 ≤ (I−A (α1, β1))
−1

C

lnµx,t−1

lnµy,t−1

lnµz,t−1

 . (A.13)

Step #5: Combining the bounds

Finally, we convert the bound (A.13) back into {Lit,Wit,Πit} space. To do so, recall that:

B−1

lnxit
ln yit
ln zit

 =

 lnLit
lnWit

ln Πit


so that, for example, we have:

µL,t ≡
maxi Li,t/Li,t−1

mini Li,t/Li,t−1
⇐⇒

µL,t =
maxi x

B−1
11

i,t y
B−1

12
i,t z

B−1
13

i,t /x
B−1

11
i,t−1y

B−1
12

i,t−1z
B−1

13
i,t−1

mini x
B−1

11
i,t y

B−1
12

i,t z
B−1

13
i,t /x

B−1
11

i,t−1y
B−1

12
i,t−1z

B−1
13

i,t−1

=⇒

µL,t ≤
maxi

(
(xi,t/xi,t−1)

B−1
11

)
×maxi

(
(yi,t/yi,t−1)

B−1
12

)
×maxi

(
(zi,t/zi,t−1)

B−1
13

)
mini

(
(xi,t/xi,t−1)

B−1
11

)
×mini

(
(yi,t/yi,t−1)

B−1
12

)
×mini

(
(zi,t/zi,t−1)

B−1
13

) ⇐⇒

µL,t ≤
(

maxi (xi,t/xi,t−1)

mini (xi,t/xi,t−1)

)|B−1
11 |
×
(

maxi (yi,t/yi,t−1)

mini (yi,t/yi,t−1)

)|B−1
12 |
×
(

maxi (zi,t/zi,t−1)

mini (zi,t/zi,t−1)

)|B−1
13 |
⇐⇒

µL,t ≤ µ
|B−1

11 |
x,t µy,t

|B−1
12 |µ|B

−1
13 |

z,t .

Proceeding similarly for µW,t and µΠ,t yields: lnµL,t
lnµW,t
lnµΠ,t

 ≤ ∣∣B−1
∣∣lnµx,t

lnµy,t
lnµz,t

 . (A.14)

An identical argument starting with the expression

lnxit
ln yit
ln zit

 = B

 lnLit
lnWit

ln Πit

 yields:

lnµx,t
lnµy,t
lnµz,t

 ≤ |B|
 lnµL,t

lnµW,t
lnµΠ,t

 . (A.15)

Substituting bounds (A.14) and (A.15) into bound (A.13) yields: lnµL,t
lnµW,t
lnµΠ,t

 ≤ ∣∣B−1
∣∣ (I− Ã (α1, β1)

)−1

C |B|

 lnµL,t−1

lnµW,t−1

lnµΠ,t−1

 ,
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as required.

A.3 Proof of Proposition 3

The proof of the first part of the proposition (sufficient conditions for uniqueness) proceeds similarly to
the proof of Proposition 1. If migration costs are symmetric and we are in the steady-state, we have:∑
i Lij =

∑
j Lji, Lij = Mijgidj , and Mij = Mji. So then it will be the case that:

gi ∝ di.

In our case, this implies:

WiΠiL
− 1
θ

i = Ω2,

which recall is our measure of steady-state welfare.
This simplifies our system of equations as follows:

W σ̃σ
i L

σ̃(1−(α1+α2)(σ−1)−σ(β1+β2))
i =

∑
j

τ1−σ
ij Ā

(σ−1)σ̃
i ūσ̃i u

(σ−1)σ̃
j Āσ̃σj W

−(σ−1)σ̃
j L

σ̃(1+(α1+α2)σ+(β1+β2)(σ−1))
j

LiW
−θ
i =

(
Ω2
)−θ∑

j

µ−θij W
θ
j .

Let us order the endogenous variables as L,W . Define α̃ ≡ α1 + α2 and β̃ ≡ β1 + β2 Then the matrix
of LHS coefficients becomes:

B ≡

(
σ̃
(

1− α̃ (σ − 1)− β̃σ
)

σ̃σ

1 −θ

)
,

and the matrix on the RHS coefficients becomes:

Γ ≡

(
σ̃
(

1 + α̃σ + β̃ (σ − 1)
)
− (σ − 1) σ̃

0 θ

)
.

Hence, we have:

A ≡ ΓB−1 =

 θ−σ−β̃θ+α̃σθ+1

σ+θ(1+(1−σ)α̃−β̃σ)
−(σ−1)(α̃+1)

σ+θ(1+(1−σ)α̃−β̃σ)
θ/σ̃

σ+θ(1+(1−σ)α̃−β̃σ)
−θ(α̃(1−σ)−β̃σ+1)
σ+θ(1+(1−σ)α̃−β̃σ)

 .

As a result, the condition for uniqueness is identical to that above, where we simply replace α1 and β1 with
α̃ ≡ (α1 + α2) and β̃ ≡ (β1 + β2), as required:

ρ


∣∣∣∣ θ(1+α̃σ+β̃(σ−1))−(σ−1)

σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣ ∣∣∣∣ (σ−1)(α̃+1)

σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣∣∣∣∣ θ/σ̃

σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣ ∣∣∣∣ θ(1−(σ−1)α̃−β̃σ)
σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣
 ≤ 1.

The second part of the proposition claims that there exists a geography for which if

ρ


∣∣∣∣ θ(1+α̃σ+β̃(σ−1))−(σ−1)

σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣ ∣∣∣∣ (σ−1)(α̃+1)

σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣∣∣∣∣ θ/σ̃

σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣ ∣∣∣∣ θ(1−(σ−1)α̃−β̃σ)
σ+θ(1+(1−σ)α̃−β̃σ)

∣∣∣∣
 > 1,

then there exist multiple equilibria. For readability, we present it this result as a general theorem, under
which our model clearly falls:
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Theorem 1. Consider the following mathematical system:

xi,1 = λ1

N∑
j=1

Kij,1x
a11
j,1 x

a12
j,2 (A.16)

xi,2 = λ2

N∑
j=1

Kij,2x
a21
j,1 x

a22
j,2 , (A.17)

where {Kij,k}l∈{1,2}i,j∈{1,...,N} are the “kernels” of (exogenous) bilateral frictions, {alk}l,k∈{1,2} are (exogenous)

elasticities, {xi,k}k∈{1,2}i∈{1,...,N} are (endogenous) strictly positive vectors and {λk}k∈{1,2} are either endogenous

scalars determined by additional constraints or are exogenous. If the spectral radius of the 2 × 2 matrix

Ap ≡ [|akl|] is greater than one, then there exist kernels {Kij,k}k∈{1,2}i,j∈{1,...,N} such that there are multiple

solutions to equations (A.16) and (A.17).

Proof. The proof proceeds by construction. We begin by performing two transformations of the problem
that simplifies the setup. First, we absorb the scalars into the endogenous variables. To do so, define

yi,k =
(
λ
dk,1
1 λ

dk,2
2

)
xi,k, where D = [dkl] ≡ − (I−A)

−1
. Note that this is well defined as long as the spectral

radius of A is not equal to one. It is straightforward to then show that the following equations:

yi,1 =
∑
j

Kij,1y
a11
j,1 y

a12
j,2

yi,2 =
∑
j

Kij,2y
a21
j,1 y

a22
j,2

are equivalent to equations (A.16) and (A.17). To see this, substitute in the definition of yi,k, yielding:(
λd11

1 λd12
2

)
xi,1 =

∑
j

Kij,1x
a11
j,1

(
λd11

1 λd12
2

)a11

xa12
j,2

(
λd21

1 λd22
2

)a12

(
λd21

1 λd22
2

)
xi,2 =

∑
j

Kij,2y
a21
j,1

(
λd11

1 λd12
2

)a21

ya22
j,2

(
λd21

1 λd22
2

)a22

,

which, rearranging, yields:

xi,1 = λ−d11+a11d11+a12d21
1 λ−d12+a11d12+a12d22

2

∑
j

Kij,1x
a11
j,1 x

a12
j,2

xi,2 = λ−d21+a21d11+a22d21
1 λ−d22+a21d12+a22d22

2

∑
j

Kij,2y
a21
j,1 y

a22
j,2 ,

which, given the definition of D, is equivalent to equations (A.16) and (A.17) as claimed.43

The second transformation is closely related to the “exact hat” algebra pioneered by Dekle, Eaton, and
Kortum (2008) in the field of trade and considers a “normalized” system of equations around an observed
equilibrium. Suppose we observe a steady-state solution {yi,k}i∈S,k∈{1,.2} that satisfies:

yi,1 =
∑
j

Kij,1y
a11
j,1 y

a12
j,2

yi,2 =
∑
j

Kij,2y
a21
j,1 y

a22
j,2 .

We are interested in knowing whether there exists a different steady-state solution {xi,k}i∈S,k∈{1,.2} that also

43This follows because exp ((−D + AD) lnλ) = exp ((− (I−A) D) lnλ) = λ.
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satisfies the same equations:

xi,1 =
∑
j

Kij,1x
a11
j,1 x

a12
j,2

xi,2 =
∑
j

Kij,2x
a21
j,1 x

a22
j,2

Define zi,k ≡ xi,k
yi,k

and note that the previous equations can be written as:

zi,1 =
∑
j

Fij,1z
a11
j,1 z

a12
j,2 (A.18)

zi,2 =
∑
j

Fij,2z
a21
j,1 z

a22
j,2 , (A.19)

where Fij,k ≡
(
Kij,k
yi,k

yak1
j,1 y

ak2
j,2

)
. By construction, note that zi,k = 1 is a solution to this system of equations.

Moreover, the matrices Fk are stochastic, i.e.:∑
j

Fij,k = 1 ∀i ∈ {1, ..., N} k ∈ {1, 2} .

In what follows, we will search for stochastic matrices Fk that have two solutions: one in which zi,k = 1 for
all i ∈ {1, .., N} and k ∈ {1, 2} and another in which there exists a zi,k 6= 1.

It turns out to do this requires N = 4. Choose any mk < 1 < Mk for k ∈ {1, 2}. Then we will construct
a set of kernels that have the following solution:

z1,1 z1,2

z2,1 z2,2

z3,1 z3,2

z4,1 z4,2

 =


m̃A

1 m̃A
2

m̃B
1 m̃B

2

m̃C
1 m̃C

2

m̃D
1 m̃D

2

 =


m

1{a11>0}
1 M

1{a11≤0}
1 ; m

1{a12>0}
2 M

1{a12≤0}
2

m
1{a21>0}
1 M

1{a21≤0}
1 ; m

1{a22>0}
2 M

1{a22≤0}
2

m
1{a11≤0}
1 M

1{a11>0}
1 ; m

1{a12≤0}
2 M

1{a12>0}
2

m
1{a21≤0}
1 M

1{a21>0}
1 ; m

1{a22≤0}
2 M

1{a22>0}
2

 . (A.20)

Before constructing the kernel, we note the following helpful properties.

First, define ln m ≡
(

lnm1

lnm2

)
, ln M ≡

(
lnM1

lnM2

)
, and the indicator matrix

P ≡
(

1 {a11 > 0} 1 {a12 > 0}
1 {a21 > 0} 1 {a22 > 0}

)

(for “positive”); and E ≡
(

1 1
1 1

)
. Then note that we can bound m and M as follows:

(A ◦P) ln m + (A ◦ (E−P)) ln M ≤ ln m ≤ ln M ≤ (A ◦ (1−P)) ln m + (A ◦P) ln M ⇐⇒
(A ◦P) ln m + (A− (A◦P)) ln M ≤ ln m ≤ ln M ≤ (A− (A◦P)) ln m + (A ◦P) ln M ⇐⇒

A ln M− (A ◦P) (ln M− ln m) ≤ ln m ≤ ln M ≤ A ln m + (A◦P) (ln M− ln m) ⇐⇒
ln B− (A ◦P) (ln M− ln m) ≤ ln m ≤ ln M ≤ ln b + (A◦P) (ln M− ln m) ⇐⇒

ln B− ln D ≤ ln m ≤ ln M ≤ ln b + ln D, (A.21)

where ln D ≡ (A ◦P) (ln M− ln m) =

ln
(
M1

m1

)a111{a11>0} (
M2

m2

)a121{a12>0}

ln
(
M1

m1

)a211{a21>0} (
M2

m2

)a221{a22>0}

 and Dk ≡ exp ((ln D)k).

Second, we note the existence and uniqueness of weights that can be used to relate the m̃n
k (n ∈

{A,B,C,D}) variables to other endogenous objects. In what follows, we define those weights for m̃A
k ,

but the corresponding results also hold for m̃B
k , m̃C

k , and m̃D
k . Since mk ≤ m̃A

k ≤ Mk, then there exists a
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weight CAk ∈ [0, 1] such that:
m̃A
k = CAk mk +

(
1− CAk

)
Mk

and there exists a weight cAk ∈ [0, 1] such that:

ln m̃A
k = cAk lnmk +

(
1− cAk

)
lnMk ⇐⇒

m̃A
k = m

cAk
k M

1−cAk
k ⇐⇒

m̃A
k = Mk

(
Mk

mk

)−cAk
, (A.22)

or conversely:

m̃A
k = mk

(
Mk

mk

)1−cAk
. (A.23)

Note that because m̃A
k = Mk

(
Mk

mk

)−cAk
from equation (A.22) we can write:

(
m̃A

1

)a11
(
m̃A

2

)a12
=

(
M1

(
M1

m1

)−cA1 )a11 (
M2

(
M2

m2

)−cA2 )a12

⇐⇒

(
m̃A

1

)a11
(
m̃A

2

)a12
= Ma11

1 Ma12
2

((
M1

m1

)a11
)−cA1 ((M2

m2

)a12
)−cA2

⇐⇒

(
m̃A

1

)a11
(
m̃A

2

)a12
=
B1

D1
D1

((
M1

m1

)a11
)−cA1 ((M2

m2

)a12
)−cA2

⇐⇒

(
m̃A

1

)a11
(
m̃A

2

)a12
=
B1

D1

((
M1

m1

)a11
)1{a11>0}−cA1 ((M2

m2

)a12
)1{a12>0}−cA2

. (A.24)

Similarly, we have:

(
m̃A

1

)a21
(
m̃A

2

)a22
=
B2

D2

((
M1

m1

)a21
)1{a21>0}−cA1 ((M2

m2

)a22
)1{a22>0}−cA2

. (A.25)

Because m̃A
k = mk

(
Mk

mk

)1−cAk
from equation (A.23) we can write:

(
m̃A

1

)a11
(
m̃A

2

)a12
=

(
m1

(
M1

m1

)(1−cA1 )
)a11 (

m2

(
M2

m2

)(1−cA2 )
)a12

⇐⇒

(
m̃A

1

)a11
(
m̃A

2

)a12
= ma11

1 ma12
2

((
M1

m1

)a11
)(1−cA1 )((

M2

m2

)a12
)(1−cA2 )

⇐⇒

(
m̃A

1

)a11
(
m̃A

2

)a12
= b1D1

((
M1

m1

)a11
)(1−cA1 ) ((

M2

m2

)a12
)(1−cA2 )

D1
⇐⇒

(
m̃A

1

)a11
(
m̃A

2

)a12
= b1D1

((
M1

m1

)a11
)(1−cA1 )−1{a11>0}((

M2

m2

)a12
)(1−cA2 )−1{a12>0}

, (A.26)

and similarly:

(
m̃A

1

)a21
(
m̃A

2

)a22
= b2D2

((
M1

m1

)a21
)(1−cA1 )−1{a11>0}((

M2

m2

)a12
)(1−cA2 )−1{a12>0}

(A.27)

69



As a result, the system of equations (A.18) and (A.19) becomes:

m̃A
1 =F11,1

B1

D1
+ F12,1

B1

D1

((
M1

m1

)a11
)1{a11>0}−cB1 ((M2

m2

)a12
)1{a12>0}−cB2

+ F13,1b1D1 + F14,1b1D1

((
M1

m1

)a11
)(1−cD1 )−1{a11>0}((

M2

m2

)a12
)(1−cD2 )−1{a12>0}

m̃B
1 =F21,1

B1

D1
+ F22,1

B1

D1

((
M1

m1

)a11
)1{a11>0}−cB1 ((M2

m2

)a12
)1{a12>0}−cB2

+ F23,1b1D1 + F24,1b1D1

((
M1

m1

)a11
)(1−cD1 )−1{a11>0}((

M2

m2

)a12
)(1−cD2 )−1{a12>0}

m̃C
1 =F31,1

B1

D1
+ F32,1

B1

D1

((
M1

m1

)a11
)1{a11>0}−cB1 ((M2

m2

)a12
)1{a12>0}−cB2

+ F33,1b1D1 + F34,1b1D1

((
M1

m1

)a11
)(1−cD1 )−1{a11>0}((

M2

m2

)a12
)(1−cD2 )−1{a12>0}

m̃D
1 =F41,1

B1

D1
+ F42,1

B1

D1

((
M1

m1

)a11
)1{a11>0}−cB1 ((M2

m2

)a12
)1{a12>0}−cB2

+ F43,1b1D1 + F44,1b1D1

((
M1

m1

)a11
)(1−cD1 )−1{a11>0}((

M2

m2

)a12
)(1−cD2 )−1{a12>0}

m̃A
2 =F11,2

B2

D2

((
M1

m1

)a21
)1{a21>0}−cA1 ((M2

m2

)a22
)1{a22>0}−cA2

+ F12,2
B2

D2
+ F13,2b2D2

((
M1

m1

)a21
)(1−cC1 )−1{a11>0}((

M2

m2

)a12
)(1−cC2 )−1{a12>0}

+ F14,2b2D2

m̃B
2 =F21,2

B2

D2

((
M1

m1

)a21
)1{a21>0}−cA1 ((M2

m2

)a22
)1{a22>0}−cA2

+ F22,2
B2

D2
+ F23,2b2D2

((
M1

m1

)a21
)(1−cC1 )−1{a11>0}((

M2

m2

)a12
)(1−cC2 )−1{a12>0}

+ F24,2b2D2

m̃C
2 =F31,2

B2

D2

((
M1

m1

)a21
)1{a21>0}−cA1 ((M2

m2

)a22
)1{a22>0}−cA2

+ F32,2
B2

D2

+ F33,2b2D2

((
M1

m1

)a21
)(1−cC1 )−1{a11>0}((

M2

m2

)a12
)(1−cC2 )−1{a12>0}

+ F34,2b2D2
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m̃D
2 =F41,2

B2

D2

((
M1

m1

)a21
)1{a21>0}−cA1 ((M2

m2

)a22
)1{a22>0}−cA2

+ F42,2
B2

D2
+ F43,2b2D2

((
M1

m1

)a21
)(1−cC1 )−1{a11>0}((

M2

m2

)a12
)(1−cC2 )−1{a12>0}

+ F44,2b2D2.

We now move on to constructing the kernel. Note that given the inequality (A.21), there exist constants
Pk ∈ (0, 1) and Qk ∈ (0, 1) such that:

mk = Pk
Bk
Dk

+ (1− Pk) bkDk (A.28)

Mk = Qk
Bk
Dk

+ (1−Qk) bkDk. (A.29)

Combining the last two results (where again we focus on m̃A
k , but the following holds for m̃B

k , m̃C
k , and m̃D

k

as well) note that:
m̃A
k = CAk mk +

(
1− CAk

)
Mk

and

mk = Pk
Bk
Dk

+ (1− Pk) bkDk

Mk = Qk
Bk
Dk

+ (1−Qk) bkDk

so that:

m̃A
k = CAk

(
Pk
Bk
Dk

+ (1− Pk) bkDk

)
+
(
1− CAk

)(
Qk

Bk
Dk

+ (1−Qk) bkDk

)
⇐⇒

m̃A
k =

((
CAk Pk +

(
1− CAk

)
Qk
)) Bk
Dk

+
(
CAk (1− Pk) +

(
1− CAk

)
(1−Qk)

)
bkDk.

Moreover, noting that:((
CAk Pk +

(
1− CAk

)
Qk
))

+
(
CAk (1− Pk) +

(
1− CAk

)
(1−Qk)

)
= 1,

we know that m̃A
k can also be written as weighted average of Bk

Dk
and bkDk, with the weight being ωAk ≡((

CAk Pk +
(
1− CAk

)
Qk
))

.
With all of these properties established, we have enough information to define our kernels:

F1 =


ωA1 0 1− ωA1 0
ωB1 0 1− ωB1 0
ωC1 0 1− ωC1 0
ωD1 0 1− ωD1 0



F2 =


0 ωA2 0 1− ωA2
0 ωB2 0 1− ωB2
0 ωC2 0 1− ωC2
0 ωD2 0 1− ωD2

 .

Note that the zi,k = 1 for all i ∈ {1, .., 4} and k ∈ {1, 2} trivially satisfies the equilibrium system. But it
is also straightforward to confirm that the proposed solution (A.20) is also an equilibrium. This is because

every equation has a term of
(
Bk
Dk

)
and (bkDk), which we know every endogenous variable is a weighted

average of (see equations (A.28) and (A.29)).
Finally, we mention that there are many geographies that deliver this multiplicity for two reasons. First,

the argument above holds for any choice of mk < 1 < Mk. Second, it is straightforward to show that
perturbations of the above kernel also generate multiple equilibria. Suppose we considered the perturbed
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system of equations:

F1 =


ωA1 − κε δε 1− ωA1 − (1− κ) ε (1− δ) ε
ωB1 0 1− ωB1 0
ωC1 0 1− ωC1 0
ωD1 0 1− ωD1 0

 ,

where ε > 0, κ ∈ [0, 1] and δ ∈ [0, 1]. The only restriction we place is that ωA1 − κε > 0 ⇐⇒ κε < ωA1 and(
1− ωA1 − (1− κ) ε

)
> 0 ⇐⇒ ε (1− κ) < 1−ωA1 . Note that both of these equations will hold for sufficiently

small ε, as ωAk =
(
ClkPk +

(
1− Clk

)
Qk
)

and Pk ∈ (0, 1) and Qk ∈ (0, 1). In what follows, we show for any
choice of ε > 0 (that is sufficiently small to satisfy these inequalities) and any choice of δ ∈ [0, 1], there exists
a κ ∈ [0, 1] that ensures the multiplicity still holds.

Then the relevant equation becomes:

m̃A
1 =ωA1

B1

D1
− κε

(
B1

D1

)
+ δε

(
B1

D1

((
M1

m1

)a11
)1{a11>0}−cB1 ((M2

m2

)a12
)1{a12>0}−cB2

)

+
(
1− ωA1

)
b1D1 − (1− κ) εb1D1 + (1− δ) εb1D1

((
M1

m1

)a11
)(1−cD1 )−1{a11>0}

+

((
M2

m2

)a12
)(1−cD2 )−1{a12>0}

⇐⇒

κ
B1

D1
+ (1− κ) b1D1 = δ

(
B1

D1

)
G+ (1− δ) 1

G
(b1D1)

where G ≡
((

M1

m1

)a11
)1{a11>0}−1{a21>0} ((

M2

m2

)a12
)1{a12>0}−1{a22>0}

. Recall that

B1

D1
=

Ma11
1 Ma12

2(
M1

m1

)a111{a11>0} (
M2

m2

)a121{a12>0}

b1D1 = ma11
1 ma12

2

(
M1

m1

)a111{a11>0}(
M2

m2

)a121{a12>0}

,

i.e. B1/D1 is always the lowest that can be achieved given the signs of the exponents, and b1D1 is the highest
that can be achieved given the signs of the exponents. As a result, we have:

G

(
B1

D1

)
=

((
M1

m1

)a11
)1{a11>0}−1{a21>0}((

M2

m2

)a12
)1{a12>0}−1{a22>0}

× Ma11
1 Ma12

2(
M1

m1

)a111{a11>0} (
M2

m2

)a121{a12>0} ⇐⇒

G

(
B1

D1

)
=

Ma11
1 Ma12

2(
M1

m1

)a111{a21>0} (
M2

m2

)a121{a22>0}

and

1

G
(b1D1) =

ma11
1 ma12

2

(
M1

m1

)a111{a11>0} (
M2

m2

)a121{a12>0}

((
M1

m1

)a11
)1{a11>0}−1{a21>0} ((

M2

m2

)a12
)1{a12>0}−1{a22>0} ⇐⇒

1

G
(b1D1) = ma11

1 ma12
2

((
M1

m1

)a11
)1{a21>0}((

M2

m2

)a12
)1{a22>0}

.
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Together these statements imply that:

B1

D1
≤ G

(
B1

D1

)
,

1

G
(b1D1) ≤ b1D1,

since B1/D1 and b1D1 are designed to be the lowest and highest (respectively) given the signs of the expo-
nents. As a result, there exist constants (weights) λ1 ∈ [0, 1] and λ2 ∈ [0, 1] such that:

G

(
B1

D1

)
= λ1

B1

D1
+ (1− λ1) b1D1

1

G
(b1D1) = λ2

B1

D1
+ (1− λ2) b1D1.

We now return to the above equation:

κ
B1

D1
+ (1− κ) b1D1 = δ

(
B1

D1

)
G+ (1− δ) 1

G
(b1D1) ⇐⇒

κ
B1

D1
+ (1− κ) b1D1 = δ

(
λ1
B1

D1
+ (1− λ1) b1D1

)
+ (1− δ)

(
λ2
B1

D1
+ (1− λ2) b1D1

)
⇐⇒

κ
B1

D1
+ (1− κ) b1D1 = (δλ1 + (1− δ)λ2)

B1

D1
+ (δ (1− λ1) + (1− δ) (1− λ2)) b1D1. (A.30)

Choose κ ≡ δλ1 + (1− δ)λ2. Then

1− κ = 1− δλ1 − (1− δ)λ2 ⇐⇒
1− κ = 1 + δ − δ − δλ1 − (1− δ)λ2 ⇐⇒
1− κ = δ (1− λ1) + (1− δ) (1− λ2) ,

so that equation (A.30) holds. Hence, for any choice of δ, we can find a κ that ensures the equilibrium still
holds. Note that there is nothing in this argument that is particular to m̃A

1 . As a result, we can construct
examples of multiple equilibria of the form:

F1 =


ωA1 − κA1 εA1 ; δA1 ε

A
1 ; 1− ωA1 −

(
1− κA1

)
εA1 ;

(
1− δA1

)
εA1

ωB1 − κB1 εB1 ; δB1 ε
B
1 ; 1− ωB1 −

(
1− κB1

)
εB1 ;

(
1− δB1

)
εB1

ωC1 − κC1 εC1 ; δC1 ε
C
1 ; 1− ωC1 −

(
1− κC1

)
εC1 ;

(
1− δC1

)
εC1

ωD1 − κD1 εD1 ; δD1 ε
D
1 ; 1− ωD1 −

(
1− κD1

)
εD1 ;

(
1− δD1

)
εD1



F2 =


δA2 ε

A
2 ; ωA2 − κA2 εA2 ;

(
1− δA2

)
εA2 1− ωA2 −

(
1− κA2

)
εA2

δB2 ε
B
2 ; ωB2 − κB2 εB2 ;

(
1− δB2

)
εB2 1− ωB2 −

(
1− κB2

)
εB2

δC2 ε
C
2 ; ωC2 − κC2 εC2 ;

(
1− δC2

)
εC2 1− ωC2 −

(
1− κC2

)
εC2

δD2 ε
D
2 ; ωD2 − κD2 εD2 ;

(
1− δD2

)
εD2 1− ωD2 −

(
1− κD2

)
εD2

 ,

for many different chosen values of
{
εlk
}

and
{
δlk
}

.

A.4 Proof of Proposition 4

The steady-state system of equations we would like to examine can be written as:

LiW
−θ
i =

(
Ω2
)−θ∑

j

MijW
θ
j (A.31)

W σ̃σ
i

(
L

1
p

i

)
=
∑
j∈S

BiTijCjW
−(σ−1)σ̃
j

(
L

1
p

j

)a
, (A.32)
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where Tij ≡ τ1−σ
ij , Bi ≡ Ā(σ−1)σ̃

i ūσ̃i , Cj ≡ Āσ̃σj ū
(σ−1)σ̃
j , Mij ≡ µ−θij , p ≡ (σ̃ (1− (α1 + α2) (σ − 1)− σ (β1 + β2)))

−1
,

and a ≡ (1+(α1+α2)σ+(β1+β2)(σ−1))
(1−(α1+α2)(σ−1)−σ(β1+β2)) . Note that a−1

p
1

σ−1 = ρ ≡ (α1 + α2 + β1 + β2).

In what follows, we will assume ρ > max
(

0, 1
θ −

1
σ−1

)
and a ∈ (0, 1). In addition, we have the labor

market clearing constraint
∑
i Li = L̄. Our goal is to provide bounds on Ω. Since Ω > 0, it suffices (and

is a little less notation-heavy) to find bounds on Ω2. In what follows, we refer to equation (A.31) as the
“migration equation” and equation (A.32) as the “trade equation”.

Before continuing with the proof, we remind the reader of a number of helpful mathematical properties.

Define ‖x‖p ≡ (
∑
i x

p
i )

1
p . (With some abuse of terminology, we refer to ‖x‖p as the “p-norm of x”, even

though it is formally a norm only if p ≥ 1). First, we remind the reader of the relationship between different
p norms. For any 0 < p < q, we have the convenient relationship:

‖x‖q ≤ ‖x‖p . (A.33)

More generally, for any p < q, we have:

N
1
q−

1
p ‖x‖p ≤ ‖x‖q ≤ C (p, q, µ)N

1
q−

1
p ‖x‖p , (A.34)

where C (p, q, µ) ≡
(

p(µq−µp)
(q−p)(µp−1)

) 1
q
(

q(µp−µq)
(p−q)(µq−1)

)− 1
p

, and µ ≥
(

maxi xi
mini xi

)
. Note that C (p, q, 1) = 1. The first

inequality is the well known generalized mean inequality, whereas the second inequality is due to the less
known result originally due to Specht (1960) and reprinted (in English) in the textbook by Mitrinovic and
Vasic (1970) (see Theorem 1 on p. 79).

Second, recall the Cauchy–Schwarz inequality that for any N × 1 vectors x ≡ [xi] and y ≡ [yi], we have:

∑
i

|xiyi| ≤

(∑
i

x2
i

) 1
2
(∑

i

y2
i

) 1
2

⇐⇒ ‖{xiyi}‖1 ≤ ‖{xi}‖2 ‖{yi}‖2 .

Third, recall that the matrix norm induced by the vector p-norm for square matrix A is defined as ‖A‖p ≡
sup

{‖Ax‖p
‖x‖p

|x 6= 0
}

. Moreover, if A is real and symmetric then ‖A‖2 = ρ (A), i.e. the spectral radius of A.

Fourth, recall that for any N×N real symmetric matrix A and any N×1 vector x we have the following
quadratic form inequality:

x′Ax ≤ ρ (A) ‖x‖2 ,

where the inequality is strict when x is the eigenvector associated with the largest eigenvalue.

A.4.1 Lemma

We now offer a lemma which provides a bound on the maximum of the ratio of the highest and lowest welfare
and population across locations. This lemma is necessary in defining the constants c1 and c2 mentioned in
the proposition.

Lemma 1. In any steady-state equilibrium, we can bound the ratio of the maximum to minimum period
ex-post welfare by:

1 ≤ maxi∈SWi

mini∈SWi
≤ µW , (A.35)

where:

µW ≡ max
i,j

(
ūi
ūj

)κu ( Āi
Āj

)κA (
max
k

(
Tki
Tkj

)κp)(
max
k

(
Mik

Mjk

)κΠ
)
,

and κu ≡ σ/θ
γ2

, κA ≡ (σ−1)/θ
γ2

, κP ≡ σ̃/θ
γ2

, κΠ ≡ σ/θ2

γ2
− 1

θ , and γ2 ≡ 1 + σ
θ − ((α1 + α2) (σ − 1) + (β1 + β2)σ),

and recall σ̃ ≡ 2σ−1
σ−1 . Similarly, we can bound the ratio of the maximum to minimum period ex-post welfare,
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inclusive of the idiosyncratic component, by:

1 ≤ maxWiL
− 1
θ

i

minWiL
− 1
θ

i

≤ µWL, (A.36)

where:

µWL ≡ max
i,j,k

(
Mi,k

Mj,k

) 1
θ

.

Proof. The proof relies on two relationships that hold in steady-state. From the labor market clearing
conditions, we have:

W θ
i Πθ

i ∝ Li, (A.37)

where Πθ
i ≡

∑
kMikW

θ
k . Similarly, noting that Λ−1

i = Πi in the steady-state, we have from equation (20):

γ lnLi = C1 + σ ln ūi + (σ − 1) ln Āi − (2σ − 1) lnPi + σ ln Πi + (α2 (σ − 1) + β2σ) lnLi,

where, recall, γ ≡ 1 + σ
θ − (α1 (σ − 1) + β1σ). Combining these two equations and solving for lnWi yields:

lnWi = κu ln ūi + κA ln Āi + κP lnP 1−σ
i + κΠ ln Πθ

i + C, (A.38)

for some constant C. We now show that we can bound the difference in Πθ
i and P 1−σ

i across locations. Note
that for any i and j we have:

Πθ
i

Πθ
j

=

∑
kMikW

θ
k∑

kMjkW θ
k

=
∑
k

(
MjkW

θ
k∑

lMjlW θ
l

)
Mik

Mjk
.

That is,
Πθi
Πθj

is a weighted average of Mik

Mjk
, as

∑
k

(
MjkW

θ
k∑

lMjlW θ
l

)
= 1. This in turn implies that for all i and j

we have:

min
k

Mik

Mjk
≤ Πθ

i

Πθ
j

≤ max
k

Mik

Mjk
(A.39)

Similarly, for any i and j we have:

min
k

Tki
Tkj
≤ P 1−σ

i

P 1−σ
j

≤ max
k

Tki
Tkj

. (A.40)

Equation (A.38) implies:

maxiWi

minjWj
=

(
ūi∗max
ūi∗min

)κu ( Āi∗max
Āi∗min

)κA (
P 1−σ
i∗max

P 1−σ
i∗min

)κP (
Πθ
i∗max

Πθ
i∗min

)κΠ

,

where imaxW ≡ arg maxiWi and iminW ≡ arg miniWi. Combining this with equations (A.39) and (A.40), we
have:

maxiWi

minjWj
≤ max

i,j

((
ūi
ūj

)κu ( Āi
Āj

)κA (
max
k

(
Tki
Tkj

)κp)(
max
k

(
Mik

Mjk

)κΠ
))
≡ µW ,

as claimed.
Similarly, combining (the log of) equation (A.37) and applying the inequality from (A.39) yields:

lnWiL
− 1
θ

i = ln Πi + C2 =⇒

maxiWiL
− 1
θ

i

miniWiL
− 1
θ

i

≤

(
ΠimaxWL

ΠiminWL

)
≤

(
max
k

MimaxWL k

MiminWL k

) 1
θ

= max
i,j

(
max
k

Mik

Mjk

) 1
θ

≡ µWL,

where imaxWL ≡ arg maxiWiL
− 1
θ

i and iminWL ≡ arg miniWiL
− 1
θ

i , as required.
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A.4.2 The upper bound

We now proceed by constructing the upper bound. The proof proceeds by first constructing an upper
bound for steady-state welfare as a function of the norm of the period ex-post welfare using the migration
equation. The proof then constructs an upper bound for the norm of the period ex-post welfare using the
trade equation. Given the lemma above, combining the two results yields the stated bound immediately.

The migration equation: Using the fact that the quadratic form of a matrix is bounded above by
the product of its largest eigenvalue and the norm of its eigenvector along with the labor market clearing
condition, we have, starting with the migration equation (A.31):(

Ω2
)θ
LiW

−θ
i =

∑
j

MijW
θ
j ⇐⇒(

Ω2
)θ
Li = W θ

i

∑
j

MijW
θ
j =⇒

(
Ω2
)θ∑

i

Li =
∑
i

W θ
i

∑
j

MijW
θ
j =⇒

(
Ω2
)θ ≤ ρ (M)

L̄
×
∥∥W θ

i

∥∥
2
⇐⇒(

Ω2
)
≤
(
L̄
)− 1

θ λ̄
1
θ

M ‖W‖2θ . (A.41)

where λ̄M is the largest eigenvalue of M. Because M is positive, this is also the spectral radius of M.

The trade equation: Turning to the trade equation (A.32), we define xi ≡ CiW
−(σ−1)σ̃
i

(
L

1
ρ

i

)a
so

that:

W σ̃σ
i

(
L

1
p

i

)
=
∑
j∈S

BiTijCjW
−(σ−1)σ̃
j

(
L

1
p

j

)a
⇐⇒

xi =
xiBi

W σ̃σ
i

(
L

1
ρ

i

)∑
j∈S

Tijxj ⇐⇒

xi = W 1−σ
i L

a−1
p

i BiCi
∑
j∈S

Tijxj .

We then sum both sides over i:

xi = W 1−σ
i L

a−1
p

i BiCi
∑
j∈S

Tijxj =⇒

∑
i

xi =
∑
i

W 1−σ
i L

a−1
p

i BiCi
∑
j

Tijxj

 =⇒

∑
i

xi ≤

(∑
i

(
W 1−σ
i L

a−1
p

i BiCi

)2
) 1

2

∑
i

∑
j

Tijxj

2


1
2

=⇒

(∑
i

x2
i

) 1
2

≤

(∑
i

(
W 1−σ
i L

a−1
p

i BiCi

)2
) 1

2

∑
i

∑
j

Tijxj

2


1
2

=⇒
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1 ≤

(∑
i

(
W 1−σ
i L

a−1
p

i BiCi

)2
) 1

2

sup
{xi≥0}

(∑
i

(∑
j Tijxj

)2
) 1

2

(
∑
i x)

1
2

⇐⇒

1 ≤

(∑
i

(
W 1−σ
i L

a−1
p

i BiCi

)2
) 1

2

ρ (T) =⇒

1 ≤

(∑
i

W 1−σ
i L

a−1
p

i BiCi

)
ρ (T) =⇒

1 ≤

(∑
i

(
W 1−σ
i

)2) 1
2
(∑

i

(
L
a−1
p

i BiCi

)2
) 1

2

ρ (T) ,

where the third line uses the Cauchy-Schwartz inequality, the fourth line uses the fact that ‖x‖2 ≤ ‖x‖1, the
fifth line takes the supremum across all possible vectors x, the sixth line notes that this is the definition of
a matrix norm, the seventh line uses the fact (again) that ‖x‖2 ≤ ‖x‖1, and the eighth line uses (again) the
Cauchy-Schwartz inequality. Continuing, we have:

(∑
i

(
W 1−σ
i

))− 1
σ−1

≤

(∑
i

(
L
a−1
p

i BiCi

)2
) 1

2


1

σ−1

ρ (T)
1

σ−1 ⇐⇒

‖W‖2(1−σ) ≤

L̄ a−1
p

∑
i

((
Li
L̄

) a−1
p

BiCi

)2
 1

2


1

σ−1

ρ (T)
1

σ−1 ⇐⇒

‖W‖2(1−σ) ≤

L̄ a−1
p

∑
i

((
Li
L̄

) a−1
p

BiCi

)2
 1

2


1

σ−1

ρ (T)
1

σ−1 ⇐⇒

‖W‖2(1−σ) ≤ L̄
ρ ×

(
max
i
BiCi

) 1
σ−1 ×

∑
i

((
Li
L̄

) a−1
p

)2
 1

2
1

σ−1

ρ (T)
1

σ−1 ⇐⇒

‖W‖2(1−σ) ≤ L̄
ρ ×max

i
Āiūi ×

(∥∥∥∥(LiL̄
)∥∥∥∥

2(σ−1)ρ

)ρ
× ρ (T)

1
σ−1 ⇐⇒

‖W‖2(1−σ) ≤ L̄
ρ ×max

i
Āiūi ×

(
N

1−2(σ−1)ρ
2(σ−1)

)1{ρ< 1
2(σ−1)}

× ρ (T)
1

σ−1 (A.42)

where the second line uses the fact that ‖x‖2 ≤ ‖x‖1 and rearranges, the third line uses the norm notation
(and multiplies and divides by the aggregate labor), the fourth line bounds the effect of the local geography
based on the best location, the fifth line rearranges, and the final line uses the relationships between different
norms mentioned at the beginning of the proof (and aggregate labor market clearing).

The bound: Recall from equation (A.34) that because (1− σ) < θ, we have:

‖W ‖2θ ≤ cN
1
2 ( 1

θ+ 1
σ−1 ) ‖W ‖2(1−σ) , (A.43)

where

c1 ≡ C (2 (1− σ) , 2θ, µW ) (A.44)
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from equation (A.34), and µW is defined above in equation (A.35) from Lemma 1. Combining equation
(A.43) with the migration bound from equation (A.41) and the trade bound from equation (A.42) then
yields: (

Ω2
)
≤ c× λ̄

1
θ

M × λ̄
1

σ−1

T ×max
i
Āiūi × L̄ρ−

1
θ ×N

1
2 ( 1

θ+ 1
σ−1 )+1{ρ< 1

2(σ−1)} 1−2(σ−1)ρ
2(σ−1) , (A.45)

as claimed.

A.4.3 The lower bound

We now proceed to prove the lower bound. As above, we first consider the migration equation and then
consider the trade equation.

The migration equation: With some abuse of notation let M−1
ij denote the {i, j}th element of M−1.

Then: (
Ω2
)θ
LiW

−θ
i =

∑
j

MijW
θ
j ⇐⇒(

Ω2
)−θ

W θ
i =

∑
j

M−1
ij LjW

−θ
j ⇐⇒

(
Ω2
)−θ

Li = LiW
−θ
i

∑
j

M−1
ij LjW

−θ
j =⇒

(
Ω2
)−θ

L̄ =
∑
i

LiW
−θ
i

∑
j

M−1
ij LjW

−θ
j =⇒

(
Ω2
)−θ

L̄ ≤ λ̄M−1

∥∥LiW−θi ∥∥
2
⇐⇒(

Ω2
)
≥ L̄ 1

θ λ
1
θ

M

∥∥∥L− 1
θ

i Wi

∥∥∥
−2θ

, (A.46)

where the second line inverts the linear equation, the third line multiplies both sides by the population, the
fourth line sums over all i and applies the labor market clearing condition, the fifth line uses the quadratic
form inequality where λ̄M−1 denotes the largest eigenvalue (in absolute value) of M−1, and the sixth line

uses the fact that λ̄M−1 = (λM )
−1

, i.e. the largest eigenvalue (in absolute value) of M−1 is the inverse of
the smallest eigenvalue of M.

The trade equation: Again, with some abuse of notation, let T−1
ij denote the {i, j}th element of T−1.

Defining yi ≡
W σ̃σ
i

(
L

1
ρ
i

)
Bi

, inverting the linear system, and rearranging the trade equation (A.32) yields:

W σ̃σ
i

(
L

1
p

i

)
=
∑
j∈S

BiTijCjW
−(σ−1)σ̃
j

(
L

1
p

j

)a
⇐⇒

W σ̃σ
i

(
L

1
p

i

)
Bi

=
∑
j∈S

TijCjW
−(σ−1)σ̃
j

(
L

1
p

j

)a
⇐⇒
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yi =
yi

CiW
−(σ−1)σ̃
i

(
L

1
p

i

)a ∑
j∈S

T−1
ij yj ⇐⇒

yi =

W σ̃σ
i

(
L

1
p
i

)
Bi

CiW
−(σ−1)σ̃
i

(
L

1
p

i

)a ∑
j∈S

T−1
ij yj ⇐⇒

yi =


(
WiL

− 1
θ

i

)σ−1

L
−(σ−1)( a−1

p
1

σ−1−
1
θ )

i

BiCi

∑
j∈S

T−1
ij yj .

Proceeding similarly to the upper bound discussed above, we have:

yi =


(
WiL

− 1
θ

i

)σ−1

L
−(σ−1)(ρ− 1

θ )
i

BiCi

∑
j

T−1
ij yj =⇒

∑
i

yi =
∑
i


(
WiL

− 1
θ

i

)σ−1

L
−(σ−1)(ρ− 1

θ )
i

BiCi

∑
j

T−1
ij yj =⇒

∑
i

yi ≤

∑
i


(
WiL

− 1
θ

i

)σ−1

L
−(σ−1)(ρ− 1

θ )
i

BiCi


2


1
2 ∑

i

∑
j

T−1
ij yj

2


1
2

=⇒

(∑
i

y2
i

) 1
2

≤

∑
i


(
WiL

− 1
θ

i

)σ−1

L
−(σ−1)(ρ− 1

θ )
i

BiCi


2


1
2 ∑

i

∑
j

T−1
ij yj

2


1
2

=⇒

1 ≤

∑
i


(
WiL

− 1
θ

i

)σ−1

L
−(σ−1)(ρ− 1

θ )
i

BiCi


2


1
2

sup
{yi≥0}

(∑
i

(∑
j T
−1
ij yj

)2
) 1

2

(
∑
i y

2
i )

1
2

⇐⇒

λT ≤

∑
i


(
WiL

− 1
θ

i

)σ−1

L
−(σ−1)(ρ− 1

θ )
i

BiCi


2


1
2

=⇒

λT ≤
∑
i


(
WiL

− 1
θ

i

)σ−1

L
−(σ−1)(ρ− 1

θ )
i

BiCi

 =⇒

λT ≤

(∑
i

((
WiL

− 1
θ

i

)σ−1
)2
) 1

2

∑
i

L−(σ−1)(ρ− 1
θ )

i

BiCi

2


1
2

=⇒
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λT ≤

(∑
i

((
WiL

− 1
θ

i

)σ−1
)2
) 1

2 ∑
i

L−(σ−1)(ρ− 1
θ )

i

BiCi

 =⇒

λT ≤

(∑
i

((
WiL

− 1
θ

i

)σ−1
)2
) 1

2

×
(

min
i
BiCi

)−1

×
∑
i

(
L
−(σ−1)(ρ− 1

θ )
i

)
, (A.47)

where the second line sums over i, the third line applies the Cauchy-Schwartz inequality, the fourth line
uses the fact that ‖x‖2 ≤ ‖x‖1, the fifth line takes supremums, the sixth line combines the fact that the
spectral radius is equal to the matrix 2-norm when the matrix is real and symmetric and the fact that the
largest eigenvalue in absolute valueof T−1 is the smallest eigenvalue in magnitude of T (denoted by λT ),
the seventh lines uses (again) the fact that ‖x‖2 ≤ ‖x‖1, the eighth line uses (again) Cauchy-Schwartz,

the ninth line uses (yet again) ‖x‖2 ≤ ‖x‖1, and the tenth lines uses the fact that
∑
i

(
L
−(σ−1)(ρ− 1

θ )
i

BiCi

)
≤

(miniBiCi)
−1∑

i L
−(σ−1)(ρ− 1

θ )
i . Rearranging the last line yields:

∥∥∥WiL
− 1
θ

i

∥∥∥
2(σ−1)

≥ λ
1

σ−1

T × L̄(ρ− 1
θ ) ×

(
min
i
Āiūi

)
×

(∥∥∥∥(LiL̄
)∥∥∥∥
−(σ−1)(ρ− 1

θ )

)(ρ− 1
θ )

.

Since we assume ρ > max
(

0, 1
θ −

1
σ−1

)
, we have − (σ − 1)

(
ρ− 1

θ

)
< 1, so that from the norm inequali-

ties referenced at the beginning of the proof:∥∥∥∥(LiL̄
)∥∥∥∥
−(σ−1)(ρ− 1

θ )
≤ N

1

−(σ−1)(ρ− 1
θ )
−1
∥∥∥∥(LiL̄

)∥∥∥∥
1

⇐⇒

∥∥∥∥(LiL̄
)∥∥∥∥
−(σ−1)(ρ− 1

θ )
≤ N

−
(

1

(σ−1)(ρ− 1
θ )

+1

)
,

so that the inequality becomes:∥∥∥WiL
− 1
θ

i

∥∥∥
2(σ−1)

≥ λ
1

σ−1

T × L̄(ρ− 1
θ ) ×

(
min
i
Āiūi

)
×N−(ρ+ 1

σ−1−
1
θ ). (A.48)

The bound: Recall from equation (A.34) that because −θ < (σ − 1), we have:

N−
1
2 ( 1

σ−1 + 1
θ )c2

∥∥∥WiL
− 1
θ

i

∥∥∥
2(σ−1)

≤
∥∥∥WiL

− 1
θ

i

∥∥∥
−2θ

, (A.49)

where

c2 ≡ C (2 (1− σ) , 2θ, µWL)
−1
, (A.50)

from equation (A.34) and µWL is defined above in equation (A.36) from Lemma 1. Combining equation
(A.46) from the migration bound with equation (A.48) from the trade bound then yields:(

Ω2
)
≥ c−1

2 × L̄ρ × λ
1
θ

M × λ
1

σ−1

T ×
(

min
i
Āiūi

)
×N−(ρ+ 1

σ−1 + 1
2 ( 1

σ−1 + 1
θ )), (A.51)

where ρ ≡ α1 + α2 + β1 + β2, as claimed.
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A.5 Proof of Proposition 5

Note that the four equations can be considered as two distinct systems of two equations, where the two
systems of equations are:

P1−σ
it =

∑
j

T̂ijt × Yjt × (P 1−σ
jt )−1

P 1−σ
it =

∑
j

T̂jit × Yjt × (P1−σ
it )−1,

and:

(
Λθit
)−1

=
∑
j

M̂jit × Ljt−1 ×
(
Πθ
jt

)−1

Πθ
it =

∑
j

M̂ijt × Ljt × Λθjt.

The first system of equations can be written as:

xi =
∑
j

KA
ijy
−1
j

yi =
∑
j

KB
ijx
−1
j ,

which has a corresponding LHS matrix of coefficients:

B ≡
(

1 0
0 1

)
,

and the matrix on the RHS coefficients becomes:

Γ ≡
(

0 −1
−1 0

)
.

Hence, we have:

A ≡ ΓB−1 =

(
0 −1
−1 0

)
.

The second system of equations can be written as:

x−1
i =

∑
j

KA
ijy
−1
j

yi =
∑
j

KB
ijxj ,

which has a corresponding LHS matrix of coefficients:

B ≡
(
−1 0
0 1

)
and the matrix on the RHS coefficients becomes:

Γ ≡
(

0 −1
1 0

)
.
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Hence, we have:

A ≡ ΓB−1 =

(
0 −1
−1 0

)
.

In both systems, we have Ap =

(
0 1
1 0

)
. It is then straightforward to check that ρ (Ap) = 1, as required.
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B Online Appendix: Possible Microfoundations for Spillovers

Section 2 briefly discussed several microfoundations for the productivity and amenity spillover functions in
equations (1) and (3), respectively. This appendix elaborates.

B.1 Productivity spillovers

We formalize two models—based on the persistence of local knowledge and the durability of investments,
in turn—that provide examples of formal microfoundations for the productivity spillover function, Ait =
ĀitL

α1
it L

α2
it−1.

B.1.1 Microfoundation #1: persistence of local knowledge

We follow Deneckere and Judd (1992). Suppose that firms can pay a fixed cost fi (in terms of local labor)
to create a new variety, over which they have monopoly rights for one period (the period in which they
introduce the variety). In the subsequent period, the new variety exists but is produced under conditions
of perfect competition. In the following period (two periods after its introduction), we assume the variety
no longer exists (i.e. its value to consumers has fully depreciated). Finally, we assume that consumers
have Cobb-Douglas preferences (within locations) over the the new varieties and the old varieties, and CES
preferences across respectively.

Demand: Let Ωnewit be the set of varieties created by monopolistically competitive firms in period t in
location i and Ωoldi,t be the set of varieties created in the previous period that are now produced under perfect
competition. We assume that consumers have the following preferences:

Cjt =

∑
i


(ˆ

Ωnewit

qijt (ω)
ρ−1
ρ dω

) ρ
ρ−1

χ(ˆ
Ωoldit

qijt (ω)
ρ−1
ρ dω

) ρ
ρ−1

1−χ


σ−1
σ


σ
σ−1

,

where qijt (ω) is the quantity consumed in country j of variety ω from location i. Hence, ρ is the elasticity
of substitution between varieties of a given type from a given location, χ is the Cobb-Douglas share of the
CES composite of new varieties from a given location, and σ is the elasticity of substitution of the aggregate
bundles (of new and old goods) across locations.

Given these preferences, the quantity a consumer in location j in period t will demand from firm ω in
location i can be written as:

qijt (ω) =


χpijt (ω)

−ρ
(Pnewit )

ρ−1 ×
τ1−σ
ijt

(
(Pnewit )χ(P oldit )

1−χ
)1−σ

∑
k τ

1−σ
ijt

(
(Pnewkt )

χ
(P oldkt )

1−χ
)1−σ Yjt if ω ∈ Ωnewit

(1− χ) pijt (ω)
−ρ (

P oldit
)ρ−1 ×

τ1−σ
ijt

(
(Pnewit )χ(P oldit )

1−χ
)1−σ

∑
k τ

1−σ
ijt

(
(Pnewkt )

χ
(P oldkt )

1−χ
)1−σ Yjt if ω ∈ Ωoldit ,

(B.1)

where:

(Pnewit )
1−ρ ≡

ˆ
Ωnewit

pijt (ω)
1−ρ

dω (B.2)

(
P oldit

)1−ρ ≡ ˆ
Ωoldit

pijt (ω)
1−ρ

dω (B.3)

denote the price indices of the inner CES nests.
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Supply: Let cit ≡ wit
Āit

denote the marginal cost of production by a firm, where Āit is the (exogenous)
productivity. The optimization problem faced by firm ω is:

max
{qijt(ω)}j

∑
j

(pijt (ω) qijt (ω)− citτijtqijt (ω))− witfit,

subject to consumer demand given by equation (B.1).
As a result, conditional on positive production (of which more below), the first order conditions imply:

pijt (ω) =
ρ

ρ− 1
citτijt, (B.4)

so that the price index across new varieties within a location is:

Pnewit ≡ (Mnew
it )

1
1−ρ

(
ρ

ρ− 1
cit

)
. (B.5)

Profits of monopolistically competitive firms: The profits of a firm ω ∈ Ωnewit are:

πit (ω) ≡
∑
j

(pijt (ω)− citτijt) qijt (ω)− witfit. (B.6)

Substituting the consumer demand expression (B.1) and the price expression (B.4) into equation (B.6) yields:

πit (ω) = χ
1

ρ

(
ρ

ρ− 1

)1−ρ∑
j

(citτijt)
1−ρ

(Pnewit )
ρ−1

τ1−σ
ijt

(
(Pnewit )

χ (
P oldit

)1−χ)1−σ

∑
k τ

1−σ
ijt

(
(Pnewkt )

χ (
P oldkt

)1−χ)1−σ Yjt − witfit

Noting that, from the consumer demand equation (B.1) and the price expression (B.4), the revenue a producer
receives is:

rit (ω) ≡
∑
j

pijt (ω) qijt (ω) ⇐⇒

rit (ω)

(
ρ

ρ− 1

)ρ−1
1

χ
=
∑
j

(citτijt)
1−ρ

(Pnewit )
ρ−1

τ1−σ
ijt

(
(Pnewit )

χ (
P oldit

)1−χ)1−σ

∑
k τ

1−σ
ijt

(
(Pnewkt )

χ (
P oldkt

)1−χ)1−σ Yjt, (B.7)

it is apparent that variable profits are simply equal to revenue divided by the elasticity of substitution:

πit (ω) + witfit =
1

ρ
rit (ω) . (B.8)

Free entry: From the free entry condition, total profits of a firm are zero, i.e. πit (ω) = 0. Applying the
free entry condition to equation (B.8) yields:

witfit =
1

ρ
rit (ω) (B.9)

Substituting equation (B.9) into equation (B.7) yields:

∑
j

τ1−ρ
ijt w−ρit A

ρ−1
it (Pnewit )

ρ−1
τ1−σ
ijt

(
(Pnewit )

χ (
P oldit

)1−χ)1−σ

∑
k τ

1−σ
ijt

(
(Pnewkt )

χ (
P oldkt

)1−χ)1−σ Yjt =
1

χ

(
ρ

ρ− 1

)ρ−1

ρfit, (B.10)

where we use the fact that cit = wit/Ait.
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Perfectly competitive varieties: The price charged for the perfectly competitive varieties ω ∈
Ωnewit is simply the marginal cost:

pijt (ω) = τijtcit ∀ω ∈ Ωnewit ,

so that:

P oldit =
(
Mold
it

) 1
1−ρ cit, (B.11)

where Mold
it ≡

∣∣Ωoldit ∣∣ denotes the measure of existing varieties.

Labor market clearing: Labor market clearing requires that the total labor used by all firms (for
entry and production of the new varieties as well as production of the existing varieties) must equal to the
total number of workers in the location, Li,t. The total amount of labor required by new varieties is:

Lnewit =

ˆ

Ωnewit

∑
j

τijt
qijt (ω)

Āit
+ fi

 dω ⇐⇒

Lnewit = ρfitM
new
it ,

where Mnew
it ≡ |Ωnewit | denotes the measure of new varieties and we have used the free entry equation (B.10).

Similarly, the total amount of labor required by old varieties is:

Loldit =

ˆ

Ωoldit

∑
j

τijt
qijt (ω)

Āit

 dω ⇐⇒

Loldit = Mnew
it

1− χ
χ

ρfit,

where we have used the equations for the old and new variety price indices from equations (B.5) and (B.11).
Total labor used by all firms is hence:

Lnewit + Loldit = Lit ⇐⇒

Mnew
it = χ

Lit
ρfit

, (B.12)

so that the measure of new firms is proportional to the labor supply.

The productivity microfoundation: Combining the old and new variety price indices from equa-
tions (B.5) and (B.11) yields:(

(Pnewit )
χ (
P oldit

)1−χ)1−σ
= (cit)

1−σ ρ

ρ− 1

(1−σ)χ
(Mnew

it )
χ( 1−σ

1−ρ ) (Mold
it

)(1−χ)( 1−σ
1−ρ )

.

Total trade flows from i to j at time t are determined by simply aggregating across all firms of both
types. The total trade of new varieties is thus:

Xnew
ijt =

ˆ
Ωnewit

pijt (ω) qijt (ω) dω ⇐⇒

Xnew
ijt = χ

(τijtcit)
1−σ

(Mnew
it )

χ( 1−σ
1−ρ ) (Mold

it

)(1−χ)( 1−σ
1−ρ )∑

k (τkjtckt)
1−σ

(Mnew
kt )

χ( 1−σ
1−ρ ) (Mold

kt

)(1−χ)( 1−σ
1−ρ )

Yjt.
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Similarly, the total trade of existing varieties is:

Xold
ijt =

ˆ
Ωoldit

pijt (ω) qijt (ω) dω ⇐⇒

Xold
ijt = (1− χ)

(τijtcit)
1−σ

(Mnew
it )

χ( 1−σ
1−ρ ) (Mold

it

)(1−χ)( 1−σ
1−ρ )∑

k (τkjtckt)
1−σ

(Mnew
kt )

χ( 1−σ
1−ρ ) (Mold

kt

)(1−χ)( 1−σ
1−ρ )

Yjt.

Hence, total trade flows are:

Xijt = Xnew
ijt +Xold

ijt ⇐⇒
Xijt = τ1−σ

ijt w1−σ
it Aσ−1

it Pσ−1
jt Yjt,

where:
P 1−σ
jt ≡

∑
k

τ1−σ
kjt w

1−σ
kt Aσ−1

kt

and:

Ait ≡ Āitf
1
ρ−1

it × Lα1
it × L

α2
it−1,

and α1 ≡ χ
ρ−1 and α2 ≡ 1−χ

ρ−1 , as claimed.

B.1.2 Microfoundation #2: durable investments in local productivity

Setup: In each location i, there is a measure of firms that compete a la Bertrand. Firms can hire workers
either to produce or to innovate, where the total quantity produced in location i at time t depends on the
amount of labor used in the production Lit, the amount of land Hit, the amount of innovation φit and some
productivity shifter Bit:

Qit = φγ1

it BitL
µ
itH

1−µ
it ⇐⇒

qit = φγ1

it Bitl
µ
it,

where in what follows we focus on the output per unit land qit and the labor per unit land lit. We assume
the parameters satisfy µ < 1 (due to the diminishing marginal product of labor per unit land) and γ1 < 1
(due to the diminishing marginal product of innovation).

To employ a level of innovation φit, a firm must hire νφξit additional units of labor, where ξ < γ1/ (1− µ).
We assume that innovation today has an affect on the level of productivity tomorrow so that:

Bit = φδγ1

it−1B̄it, (B.13)

where B̄it is an exogenous shock and δ < 1 indicates the extent to which innovation decays from one period
to the next. We assume the cost per unit of land rit is determined by a competitive auction, so that firms
obtain zero profits.

Profit maximization: Even though innovations today affect innovations in future periods, because
firms earn zero profits in the future, the dynamic problem reduces to a sequence of static profit maximizing
problems Desmet and Rossi-Hansberg (2014).

As a result the firms’ profit maximization problem becomes:

max
lit,φit

pitBit (φγ1

it )× (lµit)− wit lit︸︷︷︸
# of production workers

−wit
(
νφξit

)
︸ ︷︷ ︸

# of innovation workers

−rit,

86



which has the following first order conditions:

γ1Bitpitφ
γ1−1
it lµit = ξνwitφ

ξ−1
it

µBitpitφ
γ1

it l
µ−1
it = wit,

which combine to yield:

γ1

µ
lit = ξνφξit ⇐⇒(

γ1

µξν
lit

) 1
ξ

= φit. (B.14)

Total employment l̃it per unit land is equal to the sum of the production workers and the innovation workers:

l̃it = lit + νφξit ⇐⇒

l̃it =

(
1 +

γ1

µξ

)
lit.

Rent and income: Equilibrium rent ensures that profits per unit land are equal to zero:

rit = Bitpitφ
γ1

it l
µ
it + witlit + νwitφ

ξ
it ⇐⇒

rit =

(
1

µ
+ 1 +

γ1

µξ

)
witlit.

Note that total income per unit labor in a location is:

Yit = ritHit + witL̃it ⇐⇒

Yit

L̃it
=

 1
µ + 1 + γ1

µξ(
1 + γ1

µξ

) + 1

wit.

The productivity microfoundation: The output price is:

µBitpitφ
γ1

it L
µ−1
it = wit ⇐⇒

pit =
1

Bit

(
1

µ

(
ξνµ

γ1

) γ1
ξ

)
witl

1−µ− γ1
ξ

it

total output is:

qit = φγ1

it Bitl
µ
it ⇐⇒

Qit =

(
γ1

µξν

) γ1
ξ

BitL̃
µ+

γ1
ξ

it H
1−µ− γ1

ξ

it ,

where L̃it is total employment in location i at time t. Combining equations (B.13) and (B.14) yields:

Bit = φδγ1

it−1B̄it ⇐⇒

Bit =

 γ1

µξν(
1 + γ1

µξ

) L̃it−1

Hit−1

δ
γ1
ξ

B̄it,
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so that in total we have:

Qit =

(
γ1

µξν

) γ1
ξ


 γ1

µξν(
1 + γ1

µξ

) L̃it−1

Hit−1

δ
γ1
ξ

B̄it

 L̃
µ+

γ1
ξ

it H
1−µ− γ1

ξ

it ⇐⇒

Qit = ĀitL̃
α1
it L̃

α2
it−1L̃it,

where Āit ≡
(
γ1

µξν

)(1+δ)
γ1
ξ
(

1 + γ1

µξ

)−δ γ1
ξ

B̄itH
1−µ− γ1

ξ

it H
−δ γ1

ξ

it−1 , α1 ≡ γ1

ξ − (1− µ), and α2 ≡ δ γ1

ξ , as required.

B.2 Amenity spillover

We formalize here a possible microfoundation for the amenity spillover function, uit = ūitL
β1

it L
β2

it−1.

Demand: Suppose that consumers have Cobb-Douglas preferences over land and a consumption good,
so that their indirect utility function can be written as:

Wit =
(Yit/Lit)

(Pit)
λ (
rHit
)1−λ ,

where rHit is the rental cost of housing. Let Hit denote the (equilibrium quantity) of housing and let Kit

denote the (exogenous) quantity of land in a location, so that hit ≡ Hit/Kit is the housing density (e.g.
square feet of housing per acre of land).

Given the Cobb-Douglas preferences (and, from balanced trade, that income equals expenditure, Yit =
Eit), we have:

rHitHit = (1− λ)Yit

witLit = λYit,

so that we can write the payment to housing as a function of the payment to labor:

rHit =

(
1− λ
λ

)
1

Hit
witLit.

Note then that we can write:

Wit =
(Yit/Lit)

(Pit)
λ (
rHit
)1−λ ⇐⇒

W̃it =
1

λ (1− λ)
1−λ
λ

wit
Pit

(
Hit

Lit

) 1−λ
λ

, (B.15)

where W̃it ≡W
1
λ
it is a positive monotonic transform of Wit that hence can serve as our measure of welfare.

Supply: We now determine the equilibrium stock of housing Hit. Suppose that each unit of land is
owned by a representative developer, who decides how much to upgrade the housing tract. The amount of
housing per unit land (hit ≡ Hit

Kit
) is a function of the housing stock that has survived from the previous

period
(
hexistingit ≡ Hexistingit

Kit

)
and the amount of labor that the firm chooses to hire to rebuild it:

hit =
(
hexistingit

)µ (
ldit
)1−µ ⇐⇒

Hit =
(
Hexisting
it

)µ (
Ldit
)1−µ

.
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In what follows, we assume for simplicity that the existing housing stock from period t − 1 in period t is
some fraction of the development in the previous period:

Hexisting
it = C̄it

(
Ldit−1

)ρ
, (B.16)

where C̄it is an (exogenous) shock.

Profit maximization: A developer solves:

max
ldit

rHit hit − witldit − fit ⇐⇒

max
ldit

rHit

(
hexistingit

)µ (
ldit
)1−µ − witldit − fit,

where fit is a fixed cost (a “permit cost”) that is remitted back to local residents and is set via a competitive
biding process, ensuring that the firm earns zero profits (and hence the dynamic problem simplifies into a
series of static profit maximization problems, as above).

First order conditions are:

(1− µ) rHit

(
hexistingit

)µ (
ldit
)−µ

= wit ⇐⇒(
hexistingit

)µ (
ldit
)1−µ

=
1

1− µ
1

rHit
witl

d
it.

Note that the fixed “permit costs” are then:

fit = rHit

(
hexistingit

)µ (
ldit
)1−µ − witldit ⇐⇒

fit =

(
µ

1− µ

)
witl

d
it,

which recall are remitted to workers and ensure profits are zero.
We can combine this with the rental rate above to calculate the fraction of workers hired in the devel-

opment of the land:

hit =
(
hexistingit

)µ (
ldit
)1−µ ⇐⇒

(1− µ)

(
1− λ
λ

)
Lit = Ldit,

so we require as a parametric restriction (so that only a fraction of workers are hired as local developers):

(1− µ)

(
1− λ
λ

)
< 1.

Since a constant fraction of local workers are hired, we can express the housing density solely as a function
of the local population, the local land area, and then:

hit =
(
hexistingit

)µ (
ldit
)1−µ ⇐⇒

Hit =

(
(1− µ)

(
1− λ
λ

))(1−µ)+ρµ

C̄µit (Lit−1)
ρµ

(Lit)
1−µ

. (B.17)
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The amenity microfoundation: We substitute equation (B.17) for the equilibrium stock of housing
into the welfare equation (B.15) to yield:

W̃it =
1

λ (1− λ)
1−λ
λ

wit
Pit

(
Hit

Lit

) 1−λ
λ

⇐⇒

W̃it =
wit
Pit

ūitL
β1

it L
β2

it−1,

where ūit ≡ 1

λ(1−λ)
1−λ
λ

(
(1− µ)

(
1−λ
λ

)) 1−λ
λ ((1−µ)+ρµ)

C̄
1−λ
λ

it , β1 ≡ −µ 1−λ
λ , and β2 ≡ ρµ 1−λ

λ as required.

90



C Online Appendix: Additional tables and figures

This section includes additional tables and figures mentioned in footnotes in the text.

Table C.1: First-stage estimates

ln(Lit) ln(Lit−1) ln(P 1−σ
it ) ln(W θ

it)
(1) (2) (3) (4)

Instruments shifting amenities (used to estimate productivity spillovers):
Year*(Average max. temp. in hottest month) 5.923*** -11.821*** 0.079 8.499***

(1.345) (2.734) (0.171) (1.346)
Year*(Average max. temp. in hottest month)2 -0.011*** 0.024*** -0.000 -0.017***

(0.002) (0.005) (0.000) (0.002)
Year*(Average min. temp. in coldest month) 1.542*** -0.406* 0.324*** 1.817***

(0.132) (0.245) (0.019) (0.132)
Year*(Average min. temp. in coldest month)2 0.010*** 0.010*** 0.002*** 0.008***

(0.001) (0.001) (0.000) (0.001)

Instruments shifting productivities (used to estimate amenity spillovers):
Year*(High - low inten. corn potential yield, mean) 0.026*** 0.033*** 0.003*** 0.024***

(0.003) (0.006) (0.000) (0.003)
Year*(High inten. soy - low inten. wheat potential yield, mean) -0.048*** -0.034*** -0.004*** -0.046***

(0.007) (0.011) (0.001) (0.007)
Year*(High - low inten. corn potential yield, st. dev.) -0.004 -0.019 0.003** 0.002

(0.007) (0.014) (0.001) (0.007)
Year*(High inten. soy - low inten. wheat potential yield, st. dev.) 0.001 0.072** -0.002 -0.005

(0.017) (0.031) (0.003) (0.017)

F-statistic 24.995 36.854 48.109 26.343
R-squared 0.890 0.763 0.965 0.861
Observations 15,640 15,640 15,640 15,640

Notes: This table reports OLS regressions of the first-stage equations corresponding to the 2SLS estimates
of productivity and amenity spillover functions reported in Tables 2 and 3.. Each observation is a sub-county
from 1850-2000. All specifications control for sub-county fixed effects and region-year fixed effects, where a
region is one of 14 equally sized squares covering the continental U.S.. The sample is all sub-counties in all
years where geographic instruments and contemporaneous/lagged population values are observed. Standard
errors are two-way clustered at the sub-county (to allow for serial correlation across time) and county-year
levels (to allow for data aggregation across sub-counties within year) and are reported in parentheses. Stars
indicate statistical significance: * p<.10 ** p<.05 *** p<.01.
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Figure C.1: Spatial distributions of population over time

(a) 1800 (b) 1850

(c) 1900 (d) 1950

(e) 2000

Notes : This figure illustrates the distribution of population (Lit) across all locations from
1800 to 2000. The average population in a location in each year is normalized to one. The
colors indicate the value, with red indicating a higher population and blue indicating a lower
population.
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Figure C.2: Spatial distributions of per capita income over time

(a) 1850 (b) 1900

(c) 1950 (d) 2000

Notes : This figure illustrates the distribution of per capita income (wit) in all locations 1850
to 2000. The average value of wit in a location in each year is normalized to one. The colors
indicate the value, with red indicating a higher population and blue indicating a lower wage.
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Figure C.3: Estimating productivity and amenity spillovers using plausibly exogenous shifts
in labor supply and demand curves over time

(a) Shifts to the supply curve from amenity changes

(b) Shifts to the demand curve from productivity changes

Notes : This figure illustrates the fitted values of the first-stages from the 2SLS regressions
in Tables 2 and 3. The left panel shows the predicted change (from 1850-2000) in log popu-
lation due to plausibly exogenous changes in amenities based on technological improvements
which make residing in places with extreme climates of relatively higher amenity value over
time. These improvements shift the labor supply curve in each location and can be used to
identify the contemporaneous productivity spillover. The right panel shows the predicted
trend in log population from plausibly exogenous changes in productivities based on techno-
logical improvements and changes in international demand in agricultural production. These
improvements shift the labor demand curve in each location and can be used to identify the
contemporaneous amenity spillover. Red indicates relatively large values and blue indicates
relatively low values.
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